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ABSTRACT

Electronic dance music (EDM), produced using computers and electronic instruments, is a collection of musical sub-
genres that emphasise timbre and rhythm over melody and harmony. It is usually presented through the medium
of DJing, where tracks are curated and mixed sequentially to offer unique listening and dancing experiences.
However, unlike key and tempo annotations, DJs still rely on audition rather than metadata to examine and
select tracks with complementary audio content. In this work, we investigate the use of deep learning-based
representations (Complex Autoencoder and OpenL3) for analysing and visualising audio content on a corpus of DJ
mixes with approximate transition timestamps and compare them with signal processing-based representations
(joint time-frequency scattering transform and mel-frequency cepstral coefficients). Representations are computed
once per second and visualised with UMAP dimensionality reduction. We propose heuristics based on the
identification of observed patterns in visualisations and time-sensitive Euclidean distances in the representation
space to compute DJ transition lengths, transition smoothness, and inter-song, song-to-song, and full-mix audio
content consistency using audio representations along with rough DJ transition timestamps. Our method enables
the visualisation of variations within music tracks, facilitating the analysis of DJ mixes and individual EDM
tracks. This approach supports musicians in making informed creative decisions based on such visualisations.
We share our code, dataset annotations, computed audio representations, and trained CAE model. We encourage
researchers and music enthusiasts alike to analyse their own music using our tools: https://github.com/
alexjameswilliams/EDMAudioRepresentations.

1 Introduction

Electronic dance music (EDM) is a broad term for vari-
ous music styles created using computers and electronic

instruments, characterised by repetition, variation, and
dance-oriented compositions [1, 2]. EDM is commonly
presented through the medium of DJing, a musically
creative process of sequentially mixing pre-existing au-
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dio into an extended and continuous mix of sound for
a unique listening and dancing experience [3]. EDM
tracks, and subsequently DJ mixes, are typically built
around repeating loops of melodies, vocals, drums, and
sound effects (FX). These change and are layered over
time to produce variation and progression in the com-
position. Structural changes in EDM tracks are usually
indicated by an evolution of timbre and rhythm rather
than melody and harmony and involve either an element
entering or leaving the mix or being affected by some
form of continuous process such as FX and synthesizer
parameter automation [4, 5].

Timbre and rhythm play crucial roles in both concur-
rent and sequential grouping of musical elements. They
help us perceive these elements as unified wholes and
also inform the boundaries between different sections
of music [6, 7]. A previous study found that selecting
tracks with a similar timbre is an important factor in the
ordering of tracks in a DJ mix [8], alongside key, tempo
and track structure [9]. Perceptual studies indicate a
link between low-level audio timbre descriptors and
rhythm in EDM and how listeners experience the music
cognitively, emotionally, and physically [10]. Addition-
ally, listeners agree on the similarities between EDM
tracks in terms of timbre and rhythm [4]. Furthermore,
the EDM community consistently uses specific terms
to describe the invariant timbral qualities of this music
[11]. However, unlike key, tempo, and structure, there
is no straightforward way to visually represent varia-
tions in timbre and rhythm for DJs in contemporary
tools for the studio and the stage. Instead, DJs pri-
marily examine track characteristics through listening.
Recognising the limitations of current methods, this
work proposes novel techniques for visualising EDM
tracks, aiming to bridge the gap between how we hear
and represent sound characteristics.

2 Related Work

Previous works have developed models for timbre (and
rhythm) similarity and structural segmentation of elec-
tronic dance music (EDM) based on features such as
mel-frequency cepstral coefficients (MFCCs), rough-
ness, and spectral flatness [8, 12, 13, 14] while [9]
analysed a large corpus of DJ mixes to generate statis-
tics on key and tempo manipulations, transition lengths
and transition point agreement. In terms of visuali-
sation, [15] created a visual thumbnail to summarise
and homogeneously convey information to DJs about a

track’s tempo, volume, "aggressiveness", genre, pitch,
and bass presence, and Pioneer DJ software has in-
troduced waveform colouring with content at different
frequency bands represented on a colour spectrum [16].

3 Dataset

We have compiled a dataset of 200 recorded DJ mixes
commissioned by the long-running London night club
Fabric from its two parallel mix series titled fabric
and FABRICLIVE that ran between 2001 and 2018
for 100 mixes each. The fabric series mainly covers
styles such as house, techno, and tech house, while
FABRICLIVE covers various styles of bass music such
as drum and bass, grime, and hip-hop, and is more
stylistically diverse. Each entry in the series was com-
mercially released in physical and digital formats. The
full audio was split into sequential individual tracks at
the approximate track timestamps.

Statistics about the two mix series’ history were gen-
erated by [17]. Collectively, the series consists of over
4000 individual tracks from over 3000 unique artists.
Some mixes contain as many as 65 tracks, while others
as few as 12. The majority (60%) of DJs compiling
the mix are UK artists, while 16% are from the USA,
and 8% are from Germany, with the rest coming from
artists of 17 different nationalities around the world.
90% of the mixes are from male DJs and 10% from
female DJs, reflecting the historic under-representation
of women in EDM culture [18]. The mixes are domi-
nated by the broad electronic genre, but some contain
elements of hip hop, funk/soul, rock, reggae, pop, jazz,
folk, world, country, and classical music and a diverse
range of specific musical styles. The full distribution
of styles and genres is shown in Fig 1.

We obtained metadata, tracklists and coarse correspond-
ing track timestamps from the commercial release
information, available via Discogs1, along with the
Discogs community-generated genre and style tags.
The python3-discogs-client python package2 was used
to obtain the data on 6th May 2024.

Discogs is one of the largest online databases of edito-
rial metadata used by music collectors and enthusiasts.
The quality of the crowd-generated data in Discogs is
considered to be high because of its strict guidelines,
moderation system and a large community of involved

1https://www.discogs.com/
2https://github.com/joalla/discogs_client/
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Fig. 1: The distribution of mix-level genre and style tags across the 200 mixes in the fabric and FABRICLIVE mix
series obtained from Discogs in May 2024

enthusiasts [19]. Discogs have already been demon-
strated as a useful resource for the analysis of trends in
EDM [19, 20], but availability and accuracy of data are
dependent on community interest.

Musical genre labelling - particularly in EDM - can
be problematic in its own right [21], and any partic-
ular mix’s overall labels will not necessarily reflect
the genre and style of every track in that mix. How-
ever, Discogs implements a release-level, non-exclusive
multi-label approach with a two-level genre hierarchy
consisting of broad genre tags and more specific styles.
Multi-label classification is useful for describing EDM
due to the large number of (sub-)genres and styles and
the nature by which musical crossover and influence
occur [1, 20]. Therefore, we hope that the coarse genre
and style tags are generally agreeable for describing
the overall style of the mix, given their crowd-sourced
nature and the popularity of the mix series.

4 Computing Audio Representations

In this study, we explore applying deep learning (DL)-
based audio representations to capture comprehensive
time-dependent audio features in EDM DJ mixes. We
employ general-purpose audio representations capa-
ble of encoding timbral and rhythmic nuances, in-
cluding the Complex Autoencoder [22] and OpenL3
[23] representations, and compare them with signal
processing-based representations, including the joint
time-frequency scattering transform [24] and MFCCs
[25].

Fig. 2: 3D visualisations of the different mix-level
audio representations for the Fabric 001 mix
following dimensionality reduction. Top left:
MFCC; top right: OpenL3; bottom left: jTFS;
bottom right: CAE. Red points indicate the ear-
liest representations, while yellow indicates the
end of the mix.
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Representations are extracted from audio signals with a
temporal resolution of one feature per second. For the
last part of audio less than one second, a feature is also
computed. We introduce below specific calculations
for different representations.

4.1 Mel-Frequency Cepstral Coefficients

The computation of MFCCs involves applying the dis-
crete cosine transform (DCT) to individual time frames
of the mel-log-spectrogram derived from the input au-
dio. Empirical findings by Logan [26] demonstrated
that DCT basis functions approximate principal compo-
nent analysis (PCA) basis functions for music signals.
This allows us to efficiently separate and analyse the
various spectral features within the music.

We first compute MFCCs with a hop length of 100 ms
using librosa [27], and then time-average the MFCCs
within non-overlapping one-second windows to obtain
per-second features. We compute the feature for the
last part of the audio by time-averaging the remaining
MFCC frames.

4.2 Joint Time-Frequency Scattering Transform

The joint time-frequency scattering (jTFS) transform
processes audio signals with fixed filters and non-
linearities and can be implemented as convolutional
neural networks [24]. With 2D filters operating on
time-frequency representations derived by the wavelet
transform, jTFS is invariant to time shifts and captures
spectrotemporal modulations in audio signals.

Vahidi et al. [28] proposed using Euclidean distances
between jTFS as the loss function for sound matching.
Inspired by it, we set the hyperparameters for jTFS
computation as J = 10, J f r = 5, Q1 = 8, Q2 = 2, Q f r = 2,
T = 1000 ms, and F = 16. We split the input audio into
one-second segments. We allow overlap between the
last segment and the second-to-last segment to include
the entire audio. We use "kymatio" [29, 30] to compute
jTFS representations for these audio segments.

4.3 OpenL3

The OpenL3 embedding is produced by a self-
supervised representation learning model that learns
from audio-visual correspondences in large amounts of
video data [23, 31]. The analysis window length of the
model is fixed at one second. We compute the repre-
sentations using the pretrained model provided within

the Python package openl3, with a hop size of 1 second
and an embedding size of 512. The last audio part is
automatically padded to one second for computation.

4.4 Complex Autoencoder

The complex autoencoder (CAE) is a framework that
learns complex basis functions to transform audio into
representations invariant to various transformations,
such as time-shift and transposition. The input of the
CAE model can be time-frequency representations such
as the constant-Q transform (CQT) or raw audio signals.
[22] demonstrated the effectiveness of this approach
by training a model on CQT representations using 3
hours of piano dataset audio, achieving state-of-the-art
performance on the repeated section discovery task.

In this work, we randomly selected 50 tracks from our
EDM datasets (introduced in Section 3), totalling ap-
proximately 3 hours, and trained a new CAE model on
CQT representations. We used the same hyperparam-
eters as [22]. The model approximates a 2D Fourier
transform by learning a reduced number of components
applied to every 32 consecutive frames of CQT data.
The resulting outputs represent the magnitude spectro-
grams of these 2D Fourier transforms and constitute
the 256-dimensional frames used in our analysis. This
transformation operates on audio signals with a hop
size of 90 ms (1984 samples) and an analysis window
size of 2879 ms (32 hop sizes). This process does not
involve any padding.

For feature extraction, we consider the temporal centres
of non-overlapping one-second windows (i.e., 0.5 s, 1.5
s, ..). The centre for the last audio segment is located
at half of its audio length. For each centre, we find the
nearest CAE analysis window centre in time and use
the corresponding CAE output frame as our per-second
feature.

5 Visualisation

We then generate a series of visualisations including
the self-similarity matrix of audio representations and
their low-dimensional projections. Figure 3 shows self-
similarity matrices derived from audio representations,
from which structural patterns can be observed, partic-
ularly at transition points. We use uniform manifold ap-
proximation and projection (UMAP) [32] dimension re-
duction to visualise the audio representations described
in Section 4 across time. By representing per-second
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features as 2D or 3D vectors, we can visualise their
distribution in a 2D (Figure 4) or 3D (Figure 2) space,
capturing variations in audio features. Additionally, we
map the resulting 3D vectors to RGB values, enabling
the use of colours to extend the visualisation of audio
representations (Figure 5).

6 Computing DJ Mix Heuristics

Through visualisation, we are able to observe recurring
patterns in audio representations of time series corre-
sponding to the underlying audio content. In particular,
where there is a gradual change in the audio content
over time, we can observe a smooth trajectory of points
in the representation space, but where there is a sudden
or abrupt change in the audio, we observe more dis-
tinct clustering in the representation space, as shown
in Figure 4. While these structures may emerge during
any audio representation time series, we find that the
emergence of such structural properties in the region
of a song-to-song transition during a DJ mix can reveal
characteristics of that transition. DJ mixing is an art
form, and there are different ways that a DJ may choose
to combine tracks. Based on our listening, we believe
that the presence of a trajectory in the representation
space near a transition characterises a smooth transi-
tion, for instance, the gentle blending of EQ parameters
or crossfading between tracks. However, the lack of
long trajectories and more distinct clusters can reveal
a sharper and more abrupt transition, such as a direct
volume cut to the next track.

Based on these observations, we propose a method for
estimating the DJ transition region based on the audio
representations alone and a rough transition time stamp.
We also propose a number of ways of analysing the
audio representation time series at both the track and
mix levels to produce heuristics for describing a track
or mix, which may characterise some of their general
properties and allow for comparison with other mixes.
The full list of generated heuristics at the track and
mix level can be seen in Tab 1 and full implementation
details are available in the associated repository.

6.1 Estimating DJ Transition Regions

We estimate the DJ transition region by comparing the
Euclidean distance of points in an audio representa-
tion time series at increasing time intervals from the
approximate transition time stamp. We assume that

if a trajectory is present, the Euclidean distance will
consistently increase until the end of the trajectory (i.e.,
upon arriving at another cluster or trajectory) and then
become more unpredictable. The heuristic can be pa-
rameterised with a stopping condition: if the Euclidean
distance does not increase for a fixed number of time
steps, then we set the transition region to end at the last
distance increase. Additionally, a maximum transition
region length can be set.

6.2 Transition Smoothness

The estimated length of a DJ transition could also be
seen as one measure of smoothness insofar as longer
transitions are more likely to be a smooth blend, while
very short transitions are likely to be sharp. From this,
you can easily derive a ReLU-like heuristic in that there
is a minimum smoothness (i.e., an abrupt transition
of length 0) or an infinitely long, smooth transition.
Furthermore, you could derive relative smoothness by
comparing the length of several DJ transitions in or
across mixes.

However, a long transition is not necessarily smooth,
and so we propose another heuristic for calculating its
smoothness. Following the estimation of the DJ tran-
sition region, we once again use UMAP to reduce the
dimensionality of the audio representation time series
to 2D. We then utilise the python trajectory analysis
library traja3 to derive a measure for transition smooth-
ness by averaging its jerk (i.e. the second derivative of
the series’ acceleration) in the reduced feature space
for the length of the DJ transition region.

6.3 Audio Consistency

Along with smoothness, we consider audio consistency
as a measure of how stylistically diverse or monotonic
an audio time series is. Several heuristics are proposed
for analysing an audio representation time series, with
implementations that are agnostic to the length of the
time series and so can be computed at the track, transi-
tion, or mix level or any desired interval.

Based on our observations of the representation space
and their correspondence to the audio, we anticipate
DJ mixes with greater sonic variety to include more
distinct clusters. Our first heuristic is, therefore, to
compute the number of clusters in a time interval. We

3https://traja.readthedocs.io
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Fig. 3: Visualisation of self-similarity matrices derived from audio representations for a DJ transition. The point
of transition is marked on the axes. We use the 29th and 30th tracks in the the Kode9 & Burial mix in
FABRICLIVE.

utilise the HDBSCAN algorithm [33] and its associ-
ated library4 for clustering. The HDBSCAN algorithm
has one key tuning parameter - the number of points
required for a cluster - which we set to 15 but is param-
eterised. We once again found that UMAP reduction
was required for HBDSCAN to identify clusters more
easily across all of the different audio representations.

Our second consistency heuristic computes the variance
of the entire audio representation interval, as we expect
DJ mixes with more sonic variety to have a greater
variance in the representation space.

The final heuristic uses Maximum Mean Discrepancy
(MMD) to measure audio consistency. MMD is a sta-
tistical test used to determine whether two probability
distributions are the same by comparing their mean
embeddings in a reproducing kernel Hilbert space. It
measures the distance between the means of samples
from each distribution, with a larger MMD indicating
greater dissimilarity. The MMD heuristic allows us to
compare the distributions of track-level and mix-level
features to evaluate consistency. This heuristic can be
agnostic to the length of the time interval, but a higher
number of random samples should be used in larger
time intervals, i.e. mix-level. In our case, we use 10
randomly sampled one-second audio representations
from the time series for the song-level heuristic mea-
surement and 100 randomly sampled one-second audio
representations for the mix-level heuristic measurement
to ensure reasonable coverage of the audio data at hand.
However, we found that computing MMD consistency
using the jTFS audio representation resulted in a long

4https://hdbscan.readthedocs.io

Track-Level Mix-Level
Mix
ID Yes Yes

Track ID Yes
Track / Mix Duration Yes Yes

Number of Tracks Yes
Number of Clusters Yes Yes

MFCC OpenL3 JTFST CAE
Variance Yes Yes

MFCC OpenL3 JTFST CAE
MMD Yes Yes

MFCC OpenL3 CAE
Transition Length Yes

MFCC OpenL3 JTFST CAE
Transition Start Yes

MFCC OpenL3 JTFST CAE
Average Transition Length Yes

MFCC OpenL3 JTFST CAE
Average Smoothness Yes

MFCC OpenL3 JTFST CAE

Table 1: Generated heuristics at the track and mix time
interval level

computation time - regardless of the number of random
samples - due to the size of the jTFS representation.
Therefore, the MMD heuristic is likely to be impracti-
cal for the jTFS representation.

7 Conclusion and Potential Applications

The heuristics and visualisations presented in this work
offer a novel approach to analyzing EDM music. We
suggest that they can help identify variations in audio
features within tracks and across DJ transitions. Fur-
thermore, these tools have the potential to infer the
structure of a DJ mix based on its audio characteristics.
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Fig. 4: 2D space visualisation of the openl3 representation over time for DJ transitions. The circle markers indicate
the first track, and the plus markers indicate the second track. The red colour fades to yellow over time.
The left and right figures visualise respectively the 20th and 21th tracks, and the 34th and 35th tracks, in the
Kode9 & Burial mix in FABRICLIVE. We observe a sharper transition in the left figure and a smoother
transition in the right figure.

Fig. 5: Colour visualisation of audio representations over time for a DJ transition. We use a hard transition between
the first two tracks in the Kode9 & Burial mix in FABRICLIVE. The vertical line indicates the moment of
transition from the first track to the second track, as labelled in the tracklist. Each dot represents a second
of audio.

In turn, this could lead to an increased understanding of
time-varying characteristics in an EDM DJ mix context
and subsequently augment creative decision-making.
Furthermore, the visualisation technique could be used
as a basis for video mapping with complex colours,
shapes, and textures, constituting a timbre-aware VJ
(visual DJ) similar to [34]. The heuristics could also
serve as a basis for playlist sequencing and structural
segmentation.

The Fabric dataset could be also useful for other re-
search purposes. For example, as a benchmark for
mix-level structural segmentation given the approxi-
mate track timestamps.

7.1 Future Work

Future work should prioritise conducting user studies
to evaluate the utility of visualisations for creative ap-
plications. It would also be beneficial to evaluate the DJ

transition estimation heuristic on predicting a dataset
where we have the ground truth transition data such as
UnmixDB [35] so that its parameters can be fine tuned
and behaviour can be refined.

We would also like to carry out a thorough evaluation
of the heuristics for analysing DJ mixes. For example,
we could visualise the computed heuristic features of
DJ mixes and EDM tracks in 3D space, with axes cor-
responding to transition length, transition smoothness,
and timbral consistency. Clustering could be applied to
the mix-level features, and the results can be compared
with categories defined by mix characteristics using
metrics such as normalised mutual information (NMI)
[36] to test how DL-based representations compare
to conventional audio features at capturing semantic
information such as genre and style.

Finally, the dataset described in this work, while useful
in some ways, has the aforementioned limitations of
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the UK and Western musical bias and gender bias in
the mix selection [17]. Some styles of EDM music
are not covered, and as the mix series ceased in 2018,
contemporary EDM production will not be fully repre-
sented. Therefore, we would like to compile additional
mix data for analysis that addresses these limitations
while also acquiring data to explore statistical variation
in other DJ mix differentiators, such as different mixes
by an individual DJ, solo DJ mixes versus back-to-back
DJ mixes, and studio versus live mixes. As Discogs
is biased towards formally released music, this may
require acquiring data from alternative resources such
as 1001 Tracklists5 as in other works [9].
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