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The term “differentiable digital signal processing” describes a family of techniques
in which loss function gradients are backpropagated through digital signal
processors, facilitating their integration into neural networks. This article
surveys the literature on differentiable audio signal processing, focusing on its
use in music and speech synthesis. We catalogue applications to tasks including
music performance rendering, sound matching, and voice transformation,
discussing the motivations for and implications of the use of this methodology.
This is accompanied by an overview of digital signal processing operations that
have been implemented differentiably, which is further supported by a web book
containing practical advice on differentiable synthesiser programming (https://
intro2ddsp.github.io/). Finally, we highlight open challenges, including
optimisation pathologies, robustness to real-world conditions, and design
trade-offs, and discuss directions for future research.
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1 Introduction

Audio synthesis, the artificial production of sound, has been an active field of research for
over a century. Early inventions included entirely new categories of musical instruments
(Cahill, 1897; Ssergejewitsch, 1928) and the first machines for artificial speech production
(Dudley, 1939; Dudley and Tarnoczy, 1950), while the latter half of the 20th century saw a
proliferation of research into digital methods for sound synthesis, built on advances in signal
processing (Keller, 1994; Smith, 2010) and numerical methods (Bilbao, 2009). Applications
of audio synthesis have since come to permeate daily life, from music (Holmes, 2008),
through voice assistant technology, to the sound design in films, TV shows, video games, and
even the cockpits of cars (Dupre et al., 2021).

In recent years, the field has undergone something of a technological revolution. The
publication of WaveNet (van den Oord et al., 2016), an autoregressive neural network which
produced a quantised audio signal sample-by-sample, first illustrated that deep learning
might be a viable methodology for audio synthesis. Over the following years, new techniques
for neural audio synthesis—as these methods came to be known—abounded, from
refinements to WaveNet (Oord et al., 2018) to the application of entirely different
classes of generative model (Donahue et al., 2019; Kumar et al., 2019; Kong et al., 2020;
Chen et al., 2021), with the majority of work focusing on speech (Tan et al., 2021) and music
(Huzaifah and Wyse, 2021) synthesis.
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Nonetheless, modelling audio signals remained challenging.
Upsampling layers, crucial components of workhorse
architectures such as generative adversarial networks (Goodfellow

et al., 2014) and autoencoders, were found to cause undesirable
signal artifacts (Pons et al., 2021). Similarly, frame-based estimation
of audio signals was also found to be more challenging than might

FIGURE 1
A high level overview of the general structure of a typical DDSP synthesis system. Not every depicted component is present in every system, however
we find this structure broadly encompasses the work we have surveyed. Graphical symbols are included for illustrative purposes only.
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TABLE 1 A summary of DDSP synthesis papers reviewed in compiling this article. Papers are grouped by major application area. Those which are applied to more
than one area are grouped with their primary application.

Authors Year Contributions

Speech Synthesis

Valin and Skoglund 2019 LPC integration to WaveRNN

Wang et al. 2019a Neural source-filter (NSF)

Juvela et al. 2019 Differentiable LPC

Wang and Yamagishi 2019 Differentiable sinc FIR design

Wang et al. 2019b Further NSF models

Wang and Yamagishi 2020 Cyclic noise source for NSF

Liu et al. 2020 Neural homomorphic vocoder (NHV)

Mv and Ghosh 2020 Fully differentiable source-filter model

Tian et al. 2020 Multi-band LPC

Vipperla et al. 2020 Bunched LPC

Fabbro et al. 2020 Differentiable harmonic-plus-noise for speech

Nercessian 2021 Harmonic-plus-noise for voice conversion

Subramani et al. 2022 Differentiable LPC estimation

Choi et al. 2023a Hybrid model with self-supervised disentanglement

Kaneko et al. 2022 Differentiable ISTFT-based vocoder

Webber et al. 2023 Differentiable ISTFT-based vocoder

Watts et al. 2023 Differentiable pitch synchronous overlap add

Südholt et al. 2023 Differentiable digital waveguide (Kelly-Lochbaum)

Song et al. 2023 Hybrid model combining DDSP with GAN vocoder

Music Synthesis

Engel et al. 2020a DDSP library; differentiable spectral modelling synthesiser

Zhao et al. 2020 NSF applied to musical instrument synthesis

Michelashvili and Wolf 2020 Hierarchical NSF model

Castellon et al. 2020 DDSP-based performance rendering

Jonason et al. 2020 DDSP-based performance rendering

Caillon and Esling 2021 Hybrid real-time audio generative model

Carney et al. 2021 Efficient in-browser DDSP implementation; numerically stable TF.js kernels

Hayes et al. 2021 Differentiable waveshaping synthesiser

Masuda and Saito 2021 Differentiable subtractive synthesiser

Caspe et al. 2022 Differentiable FM synthesiser

Diaz et al. 2023 Differentiable modal synthesiser

Shan et al. 2022 Differentiable wavetable synthesiser

Kawamura et al. 2022 DDSP-based mixture model for synthesis parameter estimation

Renault et al. 2022 Differentiable piano model; explicit inharmonicity modelling

Wu et al. 2022c DDSP-based performance modelling

Masuda and Saito 2023 Semi-supervised hybrid training; differentiable ADSR

Ye et al. 2023 Neural architecture search over differentiable FM synthesisers

Shier et al. 2023 Hybrid NSF model for percussion synthesis

(Continued on following page)

Frontiers in Signal Processing frontiersin.org03

Hayes et al. 10.3389/frsip.2023.1284100

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1284100


naïvely be assumed, due to the difficulty of ensuring phase coherence
between successive frames, where frame lengths are independent of
the frequencies contained in a signal (Engel et al., 2019).

Aiming to address such issues, one line of research explored the
integration of domain knowledge from speech synthesis and signal
processing into neural networks. Whilst some methods combined
the outputs of classical techniques with neural networks (Valin and
Skoglund, 2019), others integrated them by expressing the signal
processing elements differentiably (Wang et al., 2019b; Juvela et al.,
2019). This was crystalized in the work of Engel et al. (2020a), who
introduced the terminology differentiable digital signal processing
(DDSP). In particular, Engel et al. suggested that some difficulties in
neural audio synthesis could be explained by certain biases induced

by the underlying models. The proposed advantage of DDSP was
thus to gain a domain-appropriate inductive bias by incorporating a
known signal model to the neural network. Implementing the signal
model differentiably allowed loss gradients to be backpropagated
through its parameters, in a manner similar to differentiable
rendering (Kato et al., 2020).

In subsequent years, DDSP was applied to tasks including music
performance synthesis (Jonason et al., 2020; Wu et al., 2022c),
instrument modelling (Renault et al., 2022), synthesiser sound
matching (Masuda and Saito, 2021), speech synthesis and voice
transformation (Choi H.-S. et al., 2023), singing voice synthesis and
conversion (Nercessian, 2023; Yu and Fazekas, 2023), sound-effect
generation (Hagiwara et al., 2022; Barahona-Ríos and Collins, 2023).

TABLE 1 (Continued) A summary of DDSP synthesis papers reviewed in compiling this article. Papers are grouped by major application area. Those which are
applied to more than one area are grouped with their primary application.

Authors Year Contributions

Singing Voice Synthesis

Alonso and Erkut 2021 Experiments on autoencoder from Engel et al. (2020a) for singing voice synthesis

Wu et al. 2022a Differentiable subtractive singing voice synthesiser

Guo et al. 2022a Differentiable filtering of sine excitation for adversarial SVC

Yoshimura et al. 2023 Differentiable mel cepstral synthesis filter21

Nercessian 2023 Differentiable WORLD vocoder

Yu and Fazekas 2023 Glottal-flow wavetable; efficient all-pole IIR training algorithm and implementation

Other

Shynk 1989 Gradient-based IIR optimisation

Back and Tsoi 1991 Efficient gradient-based training algorithms for FIR and IIR based neural networks

Campolucci et al. 1995 Approximate online learning algorithms for IIR networks

Bhattacharya et al. 2020 Differentiable IIR filters with instantaneous backpropagation through time

Kuznetsov et al. 2020 Differentiable IIR filters with truncated backpropagation through time

Nercessian 2020 Differentiable IIR filters via frequency sampling

Engel et al. 2020b Differentiable additive sinusoidal model; self-supervised hybrid training

Turian and Henry 2020 Experiments on differentiable frequency estimation pathologies

Turian et al. 2021 Differentiable modular synthesiser; billion sound dataset

Martinez Ramirez et al. 2021 Stochastic approximation of black-box signal processor gradients

Nercessian et al. 2021 Differentiable hyperconditioned IIR filters; stability preserving activations

Colonel et al. 2022 Random polynomial sampling for differentiable IIR self-supervision

Hagiwara et al. 2022 Experiments on animal vocal sound modelling via DDSP

Lee et al. 2022 Differentiable artificial reverberation

Steinmetz et al. 2022a Neural proxies for DDSP; evaluation of gradient estimation methods

Barahona-Ríos and Collins 2023 Sound effect synthesis with differentiable multiband noise synthesiser

Carson et al. 2023 Differentiable grey-box phaser model; differentiable LFO estimation

Hayes et al. 2023 Differentiable frequency estimation; surrogate model for sinusoidal oscillator

Schulze-Forster et al. 2023 Unsupervised source separation with differentiable source models
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The technology has also been deployed in a number of publicly
available software instruments and real-time tools.1 Figure 1
illustrates the general structure of a typical DDSP synthesis
system and we list included papers in Table 1.

Differentiable signal processing has also been applied in tasks
related to audio engineering, such as audio effect modelling
(Kuznetsov et al., 2020; Lee et al., 2022; Carson et al., 2023),
automatic mixing and intelligent music production (Martinez
Ramirez et al., 2021; Steinmetz et al., 2022a), and filter design
(Colonel et al., 2022). Whilst many innovations from this work
have found use in synthesis, and vice versa, we do not set out to
comprehensively review these tasks areas. Instead, we address this
work where it is pertinent to our discussion of differentiable audio
synthesis, and refer readers to the works of Ramírez et al. (2020),
Moffat and Sandler (2019), De Man et al. (2019), for reviews of the
relevant background, and to the work of Steinmetz et al. (2022b) for
a summary of the state of differentiable signal processing in this field.

In the wake of a proliferation of work applying DDSP to audio
synthesis, we make two key observations. Firstly, DDSP is
increasingly acknowledged as a promising methodology, and
secondly, the application of DDSP presents non-trivial challenges
that have only recently begun to be thoroughly addressed in the
literature. We argue that this disparity between successful
applications and demonstrations of fundamental issues such as
optimisation instability leads to a degree of ambiguity, rendering
it unclear whether DDSP is appropriate for specific task, or even
likely to work at all. Consequently, this article aims to clearly
delineate the capabilities and limitations of DDSP-based
methods, through a comprehensive treatment of existing
research. Additionally, we endeavour to consolidate the wide
variety of techniques under the DDSP umbrella, particularly
across the music and speech domains, aiming to facilitate future
research and prevent the duplication of efforts in these
intersecting fields.

The terms differentiable digital signal processing and DDSP have
been ascribed various meanings in the literature. For the sake of
clarity, whilst also wishing to acknowledge the contributions of
Engel et al. (2020a), we therefore adopt the following
disambiguation in this article.

1. We use the general term differentiable digital signal processing
and the acronym DDSP to describe the technique of
implementing digital signal processing operations using
automatic differentiation software.

2. To refer to Engel, et al.‘s Python library, we use the term the
DDSP library.

3. We refer to the differentiable spectral modelling synthesiser and
neural network controller introduced by Engel et al. (2020a), like
other work, in terms of their specific contributions, e.g., Engel,
et al.‘s differentiable spectral-modelling synthesiser.

2 Applications and tasks

A high level view of the tasks discussed in this section is given in
Figure 3. In this section, we survey the tasks and application areas in
which DDSP-based audio synthesis has been used, focusing on two
goals. Firstly, we aim to provide sufficient background on historical
approaches to contextualize the discussion on applications of
differentiable signal processing to audio synthesis. Secondly, we
seek to help practitioners in the task areas listed below, and in related
fields, answer the question, “what is currently possible with
differentiable digital signal processing?” For readers interested in
the differing considerations in speech and music synthesis, we refer
to the discussion by Schwarz (2007).

2.1 Musical audio synthesis

Synthesisers play an integral role in modern music creation, offering
musicians nuanced control over musical timbre Holmes (2008).
Applications of audio synthesis are diverse, ranging from faithful
digital emulation of acoustic musical instruments to the creation of
unique and novel sounds. Schwarz (2007) proposed a division of
techniques for musical audio synthesis into parametric–including
signal models, such as spectral modelling synthesis (Serra and Smith,
1990), and physicalmodels, such as digital waveguides (Smith, 1992)–and
concatenative families–which segment, reassemble, and align samples
from corpora of pre-recorded audio (Schwarz, 2006).2 We propose an
updated version of this classification in Figure 2, accommodating
developments in neural audio synthesis and DDSP.

Compared to other domains, music has particularly stringent
requirements for audio synthesisers. Real-time inference is a
necessity for integration of synthesisers into digital musical
instruments, where action-sound latencies above 10 ms are likely
to be disruptive (Jack et al., 2018). This has previously been
challenging to address with generative audio models (Huzaifah
and Wyse, 2021), particularly at the high sample rates demanded
by musical applications. Expressive control over generation is also
necessary in order to provide meaningful interfaces for musicians
(Devis et al., 2023). The reliability of this control is also crucial, yet
often challenging. Pitch coherence, for example, is a known issue
with GAN-based audio generation (Song et al., 2023). Further, the
comparative scarcity of high quality musical training data further
compounds these issues for generative models.

2.1.1 Musical instrument synthesis
In response to the challenges of neural music synthesis, Engel

et al. (2020a) implemented a differentiable spectral modelling
synthesiser (Serra and Smith, 1990) and effectively replaced its
parameter estimation algorithm with a recurrent neural network.
Specifically, the oscillator bank was constrained to harmonic
frequencies, an inductive bias which enabled monophonic
modelling of instruments with predominantly harmonic spectra,

1 These include Google Magenta’s DDSP-VST (https://magenta.tensorflow.
org/ddsp-vst), Bytedance’s Mawf (https://mawf.io/), Neutone Inc.’s
Neutone (https://neutone.space/), ACIDS-IRCAM’s ddsP (https://github.
com/acids-ircam/ddsp_pytorch) and Aalborg University’s JUCE
implementation (https://github.com/SMC704/juce-ddsp). Accessed 21st
August 2023.

2 Concatenative methods continue to underpin the dominant professional
tools for realistically simulating musical instruments. For example, the
EastWest instrument libraries. https://www.soundsonline.com/
hollywood-solo-series. Accessed 10th August 2023.
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including violin performances from the MusOpen library3 and
instruments from the NSynth dataset (Engel et al., 2017). The
resulting model convincingly reproduced certain instrument
sounds from as little as 13 min of training data. It also allowed,

through its low dimensional control representation, similarly
convincing timbre transfer between instruments (Carney
et al., 2021).

Building on this success, a number of subsequent works applied
various synthesis methods to monophonic and harmonic
instrument synthesis including waveshaping synthesis (Hayes
et al., 2021), frequency modulation synthesis (Caspe et al., 2022;
Ye et al., 2023), and wavetable synthesis (Shan et al., 2022).

FIGURE 2
A high level taxonomy of popular sound synthesis methods, based on the classifications of Schwarz (2007) and Bilbao (2009). DDSP methods (bold)
offer a combination of data-driven and parametric characteristics. This diagram is illustrative of high level relationships, and is not intended to exhaustively
catalogue all audio synthesis techniques.

3 https://musopen.org/. Accessed 26th August 2023.
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These works approach musical audio synthesis as the task of
modelling time-varying harmonics and optionally filtered noise,
utilizing input loudness and fundamental frequency signals as
conditioning. Hayes et al. (2021) and Shan et al. (2022) focus on
improving computational efficiency, demonstrating how learned
waveshapers and wavetables, respectively, can reduce the
inference-time cost. Caspe et al. (2022) and Ye et al. (2023) focus
on control and interpretability of the resulting synthesiser. In
contrast to the dense parameter space of an additive synthesier,
they apply FM synthesis which, despite its complex parameter
interrelationships, facilitates user intervention post-training due
to its vastly smaller parameter count. Ye et al. (2023) built upon
the work of Caspe et al. (2022), further tailoring the FM synthesiser
to a target instrument through neural architecture search (Ren et al.,
2022) over modulation routing.

Two common characteristics of the works discussed in this
section are a reliance on pitch tracking, and the assumption of
predominantly harmonic spectra. This, we argue, is due to the
difficulty of performing gradient descent over oscillator
frequency, discussed further in Section 3.2.2. Consequently,
adaptation of such methods to polyphonic, unpitched, and
non-harmonic instruments, or to modelling inharmonicity
induced by stiffness and nonlinear acoustic properties, is
challenging. Nonetheless, domain-specific solutions have been
proposed. Renault et al. (2022), for example, proposed a method
for polyphonic piano synthesis, introducing an extended pitch to
model string resonance after note releases, explicit inharmonicity
modeling based on piano tuning, and detuning to replicate partial
interactions on piano strings. Diaz et al. (2023) presented a
differentiable signal model of inharmonic percussive sounds
using a bank of resonant IIR filters, which they trained to
match the frequency responses produced by modal
decomposition using the finite element method. This
formulation was able to converge on the highly inharmonic
resonant frequencies produced by excitation of arbitrarily
shaped rigid bodies, with varying material parameters.

2.1.2 Timbre transfer
Building on the success of neural style transfer in the image

domain (Gatys et al., 2015), timbre transfer emerged as a task in
musical audio synthesis. Dai et al. (2018) define timbre transfer as
the task of altering “timbre information in a meaningful way while
preserving the hidden content of performance control.” They
highlight that it requires the disentanglement of timbre and
performance, giving the example of replicating a trumpet
performance such that it sounds like it was played on a flute
while maintaining the original musical expression. Specific
examples of timbre transfer using generative models include
Bitton et al. (2018) and Huang et al. (2019).

Timbre transfer has been explored a number of times using
DDSP. Engel et al. (2020a)’s differentiable spectral modelling
synthesiser and the associated f0 and loudness control signals
naturally lend themselves to the task, effectively providing a low
dimensional representation of a musical performance while the
timbre of a particular instrument is encoded in the network’s
weights. During inference, f0 and loudness signals from any
instrument can be used as inputs, in a many-to-one fashion. A
similar task formulation was explored by Michelashvili and Wolf
(2020), Carney et al. (2021), Hayes et al. (2021), and Caspe
et al. (2022).

2.1.3 Performance rendering
Performance rendering systems seek to map from a symbolic

musical representation to audio of that musical piece such that the
musical attributes are not only correctly reflected, but expressive
elements are also captured. Castellon et al. (2020); Jonason et al.
(2020); Wu D.-Y. et al. (2022) augmented Engel et al.‘s differentiable
spectral-modelling synthesiser with a parameter generation
frontend that received MIDI for performance rendering.
Castellon et al. (2020) and Jonason et al. (2020) used recurrent
neural networks to create mappings from MIDI to time-varying
pitch and loudness controls. Wu D.-Y. et al. (2022) presented a
hierarchical generative system to map first from MIDI to expressive

FIGURE 3
A high level view of audio synthesis tasks to which DDSP has been applied. Further discussion on each is presented in Section 2.
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performance attributes (articulation, vibrato, timbre, etc.), and then
to synthesis controls.

2.1.4 Sound matching
Synthesizer sound matching, also referred to as automatic

synthesizer programming, aims to find synthesiser parameters
that mostly closely match a target sound. Historical approaches
include genetic algorithms (Horner et al., 1993), while deep learning
has more recently gained popularity (Yee-King et al., 2018; Barkan
et al., 2019).

Masuda and Saito (2021) proposed to approach sound matching
with a differentiable audio synthesiser, in contrast to previous deep
learning methods which used a parameter loss function. In later
work (Masuda and Saito, 2023), they extended their differentiable
synthesiser introduced a self-supervised training scheme blending
parameter and audio losses.

2.2 Speech synthesis

Artificial generation of human speech has long fascinated
researchers, with its inception tracing back to Dudley (1939) at
Bell Telephone Laboratories, who introduced The Vocoder, a term
now widely adopted (Dudley and Tarnoczy, 1950). Subsequent
research has led to a substantial body of work on speech
synthesis, driven by escalating demands for diverse and high-
quality solutions across applications such as smartphone
interfaces, translation devices, and screen readers (Tamamori
et al., 2017).

Classical DSP-based methods for speech synthesis can be
broadly split into three categories: articulatory (Shadle and
Damper, 2001; Birkholz, 2013), source-filter/formant (Seeviour
et al., 1976), and concatenative (Khan and Chitode, 2016). This
aligns with the parametric and concatentivative distinction due
to Schwarz (2007), discussed in section 2.1. Specifically,
articulatory and source-filter/formant synthesis are parametric
methods. Moreover, articulatory synthesis techniques are related
to physical modeling approaches, as they strive to directly
replicate physical movements in the human vocal tract. Unit-
selection techniques (Hunt and Black, 1996), a subset of
concatenative synthesis, use a database of audio segmented
into speech units (e.g., phonemes) and an algorithm to
sequence units to produce speech. Subsequent developments
in machine learning gave rise to statistical parametric speech
synthesis (SPSS) systems. Unlike unit selection, SPSS systems
removed the need to retain speech audio for synthesis, focusing
instead on developing models, such as hidden Markov models, to
predict parameters for parametric speech synthesizers (Zen
et al., 2009).

In this review, two subtasks of speech synthesis are particularly
pertinent, namely, text-to-speech (TTS) and voice transformation.
TTS involves converting text into speech, a process often
synonymous with the term speech synthesis itself (Tan et al.,
2021). Voice transformation, in contrast, focuses on altering
roperties of an existing speech signal, including as voice identity
and mood (Stylianou, 2009). A central component in both tasks is
the vocoder, responsible for generating speech waveforms from
acoustic features.

As neural audio synthesis became feasible, neural vocoders such
as the autoregressive WaveNet van den Oord et al. (2016) quickly
became state-of-the-art for audio quality. However, WaveNet’s
sequential generation was prohibitively costly, motivating the
development of more efficient neural vocoders. Techniques
included cached dilated convolutions (Ramachandran et al.,
2017), optimized recurrent neural networks (Kalchbrenner et al.,
2018), enabled parallel generation using flow-based models (Oord
et al., 2018; Prenger et al., 2019), denoising diffusion probabilistic
models (DDPMs) (Kong et al., 2021), and generative adversarial
networks (GANs) (Kumar et al., 2019; Kong et al., 2020). GAN-
based vocoders have become something of a workhorse in speech
tasks, owing to their high quality and fast inference (Matsubara et al.,
2022; Song et al., 2023).

2.2.1 DDSP-based vocoders
Computational efficiency is a central consideration in neural

vocoders, as inference time is crucial in many application areas.
Before explicitly DDSP-based models, researchers began integrating
DSP knowledge into networks. Jin et al. (2018) made the connection
between dilated convolutions and wavelet analysis, which involves
iterative filtering and downsampling steps, and proposed a network
structure based on the Cooley-Tukey Fast Fourier Transform (FFT)
(Cooley and Tukey, 1965), capable of real-time synthesis. Similarly
sub-band coding through pseudo-mirror quadrature filters (PQMF)
was applied to enable greater parallelisation of WaveRNN-based
models (Yu et al., 2020).

Later work saw the integration of models for speech production.
The source-filter model of voice production has proven particularly
fruitful—LPCNet (Valin and Skoglund, 2019) augmented
WaveRNN (Kalchbrenner et al., 2018) with explicit linear
prediction coefficient (Atal and Hanauer, 1971) calculation. This
allowed a reduction in model complexity, enabling real-time
inference on a single core of an Apple A8 mobile CPU. Further
efficiency gains were made subsequently through multi-band linear
prediction (Tian et al., 2020) and sample “bunching” (Vipperla et al.,
2020). Subramani et al. (2022) later observed that the direct
calculation of LPCs limited LPCNet to acoustic features for
which explicit formulas were known. To alleviate this issue, they
proposed to backpropagate gradients through LPCs, enabling their
estimation by a neural network.

Despite improved efficiency, Juvela et al. (2019) noted that
LPCNet’s autoregression is nonetheless a bottleneck. To address
this, they proposed GAN-Excited Linear Prediction (GELP) which
produced the residual signal with a GAN signal, with explicit
computation of LPCs from acoustic features, thus limiting
autoregression to the synthesis filter and parallelising excitation.

LPCNet and GELP both incorporated DSP-based filters into a
source-filter enhanced neural vocoder. Conversely, Wang et al.
(2019b) proposed the neural source filter model which used DSP-
based model for the excitation signal (i.e., harmonics plus noise) and
a learned neural network filter. Through ablations, they
demonstrated the benefit of using such sinusoidal excitation of
the neural filters. Subsequent improvements to their neural
source filter (NSF) method included the addition of a
differentiable maximum voice frequency crossover filter (Wang
and Yamagishi, 2019), and a quasi-periodic cyclic noise
excitation (Wang and Yamagishi, 2020).
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Combining these approaches, Mv and Ghosh (2020) and Liu
et al. (2020) proposed to use differentiable implementations of DSP-
based excitation and filtering, and parameterise these with a neural
network. This allowed audio sample rate operations to be offloaded
to efficient DSP implementations, while the parameter estimation
networks could operate at frame level.

Eschewing the source-filter approach entirely, Kaneko et al.
(2022) demonstrated that the last several layers in a neural
vocoder such as HiFi-GAN (Kong et al., 2020) could be replaced
with an inverse short-time Fourier transform (ISTFT). The number
of replaced layers can be tuned to balance efficiency and generation
quality. Webber et al. (2023) also used a differentiable ISTFT,
reporting a real-time factor of over 100× for speech at 22.05 kHz
on a high-end CPU. In contrast to a GAN, Webber et al. learned a
compressed latent representation and by training a denoising
autoencoder. Nonetheless, Watts et al. (2023) noted that neural
vocoders which run in real-time on a CPU often rely on powerful
CPUs, limiting use in low-resource environments. In particular, they
highlight Alternative and Augmentative Communication (AAC)
devices, which are used by people with speech and
communication disabilities (Murray and Goldbart, 2009). Watts
et al. proposed a method using the ISTFT and pitch-synchronous
overlap add (PSOLA), with lightweight neural networks operating at
rates below the audio sample rate.

Song et al. (2023) highlight that GAN vocoders struggle with
periodicity, especially during prolonged vocalisations, and attribute
this to unstable parallel generation. This is compounded by over-
smoothing of acoustic features output by TTS or voice
transformation models. They note that DSP vocoders can be
more robust and less prone to pitch and phase errors, and thus
propose to use a pre-trained neural homomorphic vocoder (Liu
et al., 2020) to generate mel-spectrograms for a GAN vocoder, which
they confirmed experimentally to improve generalisation to unseen
speakers. Even in DSP-based models, however, design choices can
influence robustness. Wang and Yamagishi (2020) observed that the
choice of source signal interacts with the speaker’s gender: sinusoidal
excitation performs better for female voices than for male voices,
while a cyclic noise signal improves performance on male voices.
Additionally, they note the sine-based source signals may lead to
artefacts during less periodic, expressive vocalisations such as creaky
or breathy voices.

2.2.1.1 Control
DDSP-based methods can also facilitate control over speech

synthesis. Fabbro et al. (2020) distinguish between two categories of
method: those that necessitate control and those that offer optional
control. The authors advocate for the latter, arguing that
disentangling inputs into components—namely, pitch, loudness,
rhythm, and timbre—provides greater flexibility, proposing a
method that enables this. These disentangled factors are then
utilized to drive a differentiable harmonic plus noise synthesizer,
although the authors note that there is room for improvement in the
quality of the synthesis.

Choi H.-S. et al. (2023) also decompose the voice into four
aspects: pitch, amplitude, linguistic features, and timbre. They
identify a that control parameters are often entangled in a mid-
level representation or latent space, in existing neural vocoders,
restricting control and limiting models’ potential as co-creation

tools. To address this, in contrast to the single network of
Fabbro et al. (2020), they combine dedicated modules for
disentangling controls. They evaluate their methodology
through a range of downstream tasks, using a modified
parallel WaveGAN model (Yamamoto et al., 2020) with
sinusoidal and noise conditioning, along with timbre and
linguistic embeddings. Reconstruction was found to be nearly
identical in a copy synthesis task.

2.2.2 Text-to-speech synthesis
Text-to-speech (TTS) is the task of synthesising intelligible

speech from text, and has received considerable attention due to
its numerous commercial applications. Tan et al. (2021) provide a
comprehensive review of the topic, including references to reviews
on classical methods and historical perspectives. While most
research on DDSP audio synthesis focuses on vocoding, some
studies have also assessed its application in TTS systems (Juvela
et al., 2019; Wang and Yamagishi, 2019; Liu et al., 2020; Choi H.-S.
et al., 2023; Song et al., 2023).

2.2.3 Voice transformation
An application of speech synthesis systems is the ability to

modify and transform the voice. Voice transformation is an
umbrella term used to refer to a modification that is made to a
speech signal that alters one or more aspects of the voice while
keeping the linguistic content intact Stylianou (2009). Voice
conversion (VC) is a subtask of voice transformation that seeks
to modify a speech signal such that a utterance from a source
speaker sounds like it was spoken by a target speaker. Voice
conversion is a longstanding research task (Childers et al.,
1985) that has continued to receive significant attention in
recent years, demonstrated by the biannual voice conversion
challenges operating in 2016, 2018, and 2020. An overview of
the field is provided by (Mohammadi and Kain, 2017) and more
recent applications of deep learning towards VC is reviewed by
(Sisman et al., 2021).

Nercessian (2021) incorporated a differentiable harmonic-plus-
noise synthesiser (Engel et al., 2020a) to a end-to-end VC model,
augmenting it with convolutional pre- and post-nets to further
shape the generated signal. This formulation allowed end-to-end
training with perceptually informed loss functions, as opposed to
requiring autoregression. Nercessian also argued that such
“oscillator driven networks” are better equipped to produce
coherent phase and follow pitch conditioning.

Choi H.-S. et al. (2023) explored zero-shot voice conversion with
their NANSY++ model, which was facilitated by the distentangled
intermediate representations. Their approach was to replace the
timbre embedding with that of a target speaker, while also
transforming pitch conditioning for the sinusoidal generator to
match the target.

In voice designing or speaker generation (Stanton et al., 2022),
the goal is to provide a method to modify certain characteristics of a
speaker and generate a completely unique voice. Creation of new
voice identifies has application for a number of downstream
applications including audiobooks and speech-based assistants.
Choi H.-S. et al. (2023) fit normalising flow models, conditioned
on age and gender attributes, to generate synthesis control
parameters for this purpose.
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2.3 Singing voice synthesis

Singing voice synthesis (SVS) aims to generate realistic singing
audio from a symbolic music representation and lyrics, a task that
inherits challenges from both speech and musical instrument
synthesis. The musical context demands an emphasis on pitch and
timing accuracy (Saino et al., 2006), as well as ornamentation through
dynamic pitch and loudness contours. Audio is typically expected at
the higher resolutions, typical of musical recordings (i.e., 44.1 kHz CD
quality vs. 16 kHz or 24 kHz as often used for speech), incurring
additional computational complexity (Chen et al., 2020). Applications
of SVS include performance rendering from scores, modifying or
correcting existing performances, and recreating performances in the
likeness of singers (Rodet, 2002).

SVS methods originated in the 1960s, evolving from speech
synthesis systems, and early methods can be similarly coarsely
categorised into waveform and concatenative techniques (Rodet,
2002). A historical perspective is provided by Cook (1996), and
statistical methods were later introduced by Saino et al. (2006).

Early deep learning approaches to SVS included simple feed-forward
networks (Nishimura et al., 2016) and a WaveNet-based autoregressive
model Blaauw and Bonada (2017), which showed improvements over
then state-of-the-art concatenative synthesisers. Deep learning-based SVS
systems rely on large, annotated datasets for training, necessitated by the
diverse vocal expressions in musical singing (Yu and Fazekas, 2023). The
scarcity of such singing datasets was noted by Gómez et al. (2018) and
Cho et al. (2021), contrasting with advances in TTS research predicated
on open datasets like Hi-Fi TTS (Bakhturina et al., 2021) and LJSpeech
(Ito and Johnson, 2017). The need for such data, including for specific
vocal techniques like growls and rough voice (Gómez et al., 2018),
motivated self-supervised systems incorporating DDSP like NANSY++
(Choi H.-S. et al., 2023), which supported high-quality resynthesis with a
fraction of the OpenCPOP dataset (Wang et al., 2022). Wu D.-Y. et al.
(2022) also found that the differentiable vocoder SawSing performed well
in resource-limited training.

Gómez et al. (2018) and Cho et al. (2021) note that the black-box
nature of deep learning limits analytical understanding of learned
mappings and the ability to gain domain knowledge from trained

TABLE 2 Differentiable implementations of discrete time IIR filters with trainable parameters. Specific parameterisations, training algorithms, and stability
constrains are presented. Recursive filter structure is also indicated where appropriate and when clear from the original manuscript.

Type References Representation Parameters Training
algorithm

Stability constraints Time
varying

First Order Kuznetsov et al.
(2020)

Direct b0, b1, a1 TBPTT |a1| < 1 7

Bhattacharya et al.
(2020)

Shelving filter Freq. (fc), gain (G) IBPTT — 7

Second
Order

Kuznetsov et al.
(2020)

Direct b0, b1, b2, a1, a2 TBPTT (TDF-II) |a1| ≤ 0.5 7

|a2| < 0.5

Kuznetsov et al.
(2020)

State-variable filter Cutoff (g), damping (R), band
gains (cLP, cHP, cBP)

TBPTT g = 1 7

R � 1�
2

√

Bhattacharya et al.
(2020)

Peak Freq. (fc), bandwidth (fb)
gain (G)

IBPTT (DF-II) — 7

Nercessian (2020) Low/high shelf, peak Freq. (ω0), gain (A)
Q-factor (q)

Freq. Sampling — 7

Nercessian et al.
(2021)

Direct b0, b1, b2, a1, a2 Freq. Sampling a1 ← 2 tanh a1 Via
conditioning

a2 ← 1
2 (|a1| + (2 − |a1|)tanha2)

Pole/zero p, q ∈ C Freq. Sampling p ← p · tanh|p||p| Via
conditioning

Low/high shelf, peak Freq. (ω0), gain (A)
Q-factor (q)

Freq. Sampling Q ← Qmax
1+eQ Via

conditioning

Yu and Fazekas
(2023)

Direct (all-pole) a1, a2 TBPTT (DF-I) a1 ← 2 tanh a1 Framewise

a2 ← 1
2 (|a1| + (2 − |a1|)tanha2)

Carson et al. (2023) All-pass Break freq. (ωb), thru gain (g1),
feedback gain (g2)

Freq. Sampling — Framewise

Arbitrary
order

Kuznetsov et al.
(2020)

Linear state-space Transition matrices (A, B, C, D) TBPTT A ~ Un×n(−1
n,

1
n) 7

Mv and Ghosh
(2020)

LPC Reflection Coefficients (km) TBPTT km ∈ (−1, 1) Framewise

Subramani et al.
(2022)

LPC Reflection Coefficients (km) Autoregressive km ∈ (−1, 1) Framewise
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SVS systems. Gomez et al. acknowledged that this weakens the link
between acoustics research and engineering, and foreshadowed DDSP-
like innovation, hypothesising that “transparent” algorithms might
restore it. Indeed, exploitability has motivated numerous DDSP-based
SVS systems Yu and Fazekas (2023); Alonso and Erkut (2021);
Nercessian (2023). Yu and Fazekas highlight the potential for their
differentiable LPC method to be used for voice decomposition and
analysis. Nercessian (2023) notes that the differentiable harmonic-plus-
noise synthesiser of Engel et al. (2020a) has limited exploitability, and
proposed as an alternative a differentiable implementation of the non-
parametric WORLD feature analysis and synthesis model.

A further impetus for applying DDSP to SVS is audio quality,
with two major challenges in neural vocoders being phase
discontinuities and accurate pitch reconstruction. Reconstructing
phase information from mel-spectrograms is difficult, and phase
discontinuities can cause unnatural sound glitches and voice
tremors (Wu D.-Y. et al., 2022). Differentiable oscillators, like the
sawtooth oscillator proposed by Wu et al., address this by enforcing
phase continuity.

Accurate pitch control and reconstruction are known challenges for
neural vocoders (Hono et al., 2021). Yoshimura et al. (2023) argue that
non-linear filtering operations in neural vocoders obscure the
relationship between acoustic features and output, complicating
accurate pitch control. They propose differentiable linear filters in a
source-filter model to address this. Nercessian (2023) stress the
importance of accurate pitch control and reconstruction for musical
applications, a feature inherent to their differentiable WORLD
synthesiser.

Computational efficiency is less emphasized in SVS literature
compared to speech synthesis; however, GOLF Yu and Fazekas
(2023) required less than 40% GPU memory during training and
provided nearly 10x faster inference speed than other DDSP SVS
methods (which already supported real-time operation). This fast
inference speed can facilitate downstream applications, including
real-time musicking contexts or functioning in low-resource
embedded devices.

2.3.1 Singing voice conversion
The task of singing voice conversion (SVC) aims to transform a

recording of a source singer such that it sounds like it was sung by a
given target singer. This task, related to voice conversion, introduces
further challenges (Huang et al., 2023). Specifically, there are a wider
range of attributes to model, such as pitch contours, singing styles,
and expressive variations. Further, perceived pitch and timing must
adhere to the source material while incorporating stylistic elements
from the target. Variations of this task include in-domain transfer,
where target singing examples are available, and the more complex
cross-domain transfer, where the target must be learned from speech
samples (Huang et al., 2023) or from examples in a different
language (Polyak et al., 2020).

The 2023 SVC Challenge (Huang et al., 2023) illustrated the
applicability of DDSP methods for SVC. According to a subjective
evaluation of naturalness, the top two performing models were both
based on DSPGan (Song et al., 2023), which uses a pre-trained Neural
Homomorphic Vocoder (Liu et al., 2020) to generate mel-spectrograms
for resynthesis using a differentiable source-filter based model.
However, the organisers noted that it would be premature to
conclude that DSPGan is unilaterally the best SVC model, given the

small sample size. Nonetheless, five other teams incorporated neural
source-filter (Wang et al., 2019b) based components into HiFi-GAN
(Kong et al., 2020) to improve generalisation, implying that
incorporation of domain knowledge via DDSP offers some benefit.

Nercessian (2023) implemented a differentiable WORLD
vocoder, which was also applied to SVC. They argue that this
implementation, paired with a deterministic WORLD feature
encoder and a learned decoder, offers increased control over the
pitch contour while ensuring phase coherence–both of which are
challenging for neural vocoders. Further, the interpretable feature
representation and extraction procedure allows for direct
manipulation of audio attributes, as well as pitch and loudness
conditioned timbre transfer, as described by Engel et al. (2020a).

3 Differentiable digital signal
processing

In this section we survey differentiable formulations of signal
processing operations for audio synthesis. Whilst many were first
introduced for other tasks, their relevance to audio synthesis is often
clear as many correspond to components of classical synthesis
algorithms. For this reason, we choose to include them here.

Our aim in this section is to provide an overview of the technical
contributions that underpin DDSP in order to make clearer the
connections between methods, as well as facilitate the identification
of open directions for future research. We also hope that this section
will act as a technical entry point for those wishing to work with
DDSP. We thus do not intend to catalogue every application of a
given method, but instead endeavour to acknowledge technical
contributions and any prominent variations. Readers interested
in further practical advice on implementing DDSP techniques for
audio synthesis should refer to the accompanying web book,
available at https://intro2ddsp.github.io/.

3.1 Filters

3.1.1 Infinite impulse response
A causal linear time-invariant (LTI) filter with impulse response

h(t) is said to have an infinite impulse response (IIR) if there does
not exist a time T such that h(t) = 0 for all t > T. In the case of digital
filters, this property arises when the filter’s difference equation
includes a nonzero coefficient for a previous output.

We present the dominant methods for differentiable IIR filtering
in Table 2.

3.1.1.1 Recursive methods
Optimising IIR filter coefficients by gradient descent is not a new

topic. Several algorithms for adaptive IIR filtering and online system
identification rely on the computation of exact or approximate
gradients (Shynk, 1989). Moreover, to facilitate the training of
locally recurrent IIR multilayer perceptrons (IIR-MLP) (Back and
Tsoi, 1991), approximations to backpropagation-through-time
(BPTT) have been proposed (Campolucci et al., 1995). However,
prior to widely available automatic differentiation, such methods
required cumbersome manual gradient derivations, restricting the
exploration of arbitrary filter parametrisations or topologies.
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One such training algorithm, known as instantaneous
backpropagation through time (IBPTT) Back and Tsoi (1991),4

was applied by Bhattacharya et al. (2020) to a constrained
parameterisation of IIR filters, namely, peak and shelving filters
such as those commonly found in audio equalisers. This method was
tested on a cascade of such filters and used to match the response of
target head-related transfer functions (HRTFs). However, the
formulation of IBPTT precludes the use of most modern audio
loss functions, somewhat hindering the applicability of this method.

Kuznetsov et al. (2020) identified the close relationship between
IIR filters and recurrent neural networks (RNNs). In particular, they
illustrated that in the case of a simple RNN known as the Elman
network (Elman, 1990), the two are equivalent when the activations
of the Elman network are element-wise linear maps, and the bias
vectors are zero. This is illustrated below:

h n[ ] � σh Whh n − 1[ ] + Uhx n[ ] + bh( ), h n[ ] � Whh n − 1[ ] + Uhx n[ ],
y n[ ] � σy Wyh n[ ] + by( ). y n[ ] � Wyh n[ ].

Elman network( ) All − pole IIR filter( )
(1)

Such RNNs are typically trained with backpropagation through
time (BPTT), and more commonly its truncated variant (TBPTT) in
which training sequences are split into shorter subsequences.5 Based
on this equivalence, Kuznetsov et al. directly applied TBPTT to IIR
filters, effectively training various filter structures as linear recurrent
networks. To ensure filter stability, they propose simple constraints
on parameter initialisation.

A challenge with recursive optimisation is the necessity of
memory allocations for each “unrolled” time step. For long
sequences, this can result in poor performance and high memory
cost. To address this and allow optimisation over high order IIR
filters, Yu and Fazekas (2023) provided an efficient algorithm for
applying BPTT to all-pole filters. Specifically, for an all-pole filter
with coefficients a ∈ RM, they showed that the partial derivatives
∂y[n]
∂ai

and ∂L
∂x[n] can be expressed as applications of the same all-pole

filter to −y [n − i], and a filter with time-reversed coefficients to
∂L

∂y[M−n], respectively. That is.

∂y n[ ]
∂ai

� −y n − i[ ] −∑M
k�1

ak
∂y n − k[ ]

∂ai
0 Z ∂y n[ ]

∂ai
{ }

� 1

1 +∑M
k�1akz−k

· Y z( ) · z−i, (2)

∂L
∂x n[ ] �

∂L
∂y n[ ] −∑M

k�1
ak

∂L
∂x n + k[ ] 0 Z ∂L

∂x n[ ]{ }
� 1

1 +∑M−1
k�0 aM−kz−k

· Z ∂L
∂y n[ ]{ }, (3)

whereZ ·{ } denotes the z-transform operator. It is clear from Eqs 2, 3
that these derivatives can be evaluated without the need for a

computation graph of unrolled filter timesteps, enabling the use
of efficient, recursive IIR implementations.6.

3.1.1.2 Frequency sampling methods
It is common, when working with higher order filters, to

factorise the transfer function into a cascade of second order
sections in order to ensure numerical stability. It has been
reported (Nercessian et al., 2021) that optimising differentiable
cascades using BPTT/TBPTT limits the number of filters that can
be practically learned in series, motivating an alternate algorithm for
optimising the parameters of cascaded IIR filters.

One such approach, proposed by Nercessian (2020),
circumvented the need for BPTT by defining a loss function in
the spectral domain, with the desired filter magnitude response as
the target. This method was used to train a neural network to match
a target magnitude response using a cascade of differentiable
parametric shelving and peak filters. To compute the frequency
domain loss function, the underlying response of the filter must be
sampled at some discrete set of complex frequencies, typically
selected to be the Kth roots of unity ej

k
K, k � 0, 1, . . . , K − 1.

This procedure is equivalent to the frequency sampling method
for finite-impulse response filter design. That is, by sampling the
filter’s frequency response we are effectively optimising an FIR filter
approximation to the underlying frequency response. Naturally, this
sampling operation results in time-domain aliasing of the filter
impulse response, and the choice of K thus represents a trade-off
between accuracy and computational expense.

In subsequent work, Nercessian et al. (2021) extended this
frequency sampling approach to hyperconditioned IIR filter
cascades, to model an audio distortion effect. Hyperconditioning
refers to a hypernetwork-like (Ha et al., 2017) structure in which the
hypernetwork introduces conditioning information to the main
model by generating its parameters. In this case, the
hypernetwork’s inputs are the user-facing controls of an audio
effect, and the main model is a cascade of biquadratic IIR filters.

Whilst filter stability is less of a concern when training a model
to produce fixed sets of filter coefficients, the hyperconditioned
setting carries a greater risk. Both user error and erroneous model
predictions may lead to a diverging impulse response at either
inference or training time. For this reason, Nercessian et al.
tested three parameterisations of cascaded biquads (coefficient,
conjugate pole-zero, and parametric EQ representations), and
proposed stability enforcing activations for each. Rather than
directly optimising filter magnitude responses, the model was
instead optimised using an audio reconstruction loss by applying
the filters to an input signal. During optimisation, this was
approximated by complex multiplication of the frequency-
sampled filter response in the discrete Fourier domain.

Subsequently, this constrained frequency sampling method was
applied to the more general task of IIR filter design (Colonel et al.,
2022). Here, a neural network was trained to parameterise a
differentiable biquad cascade to match a given input magnitude
response, using synthetic data sampled from the coefficient space of

4 Note that the algorithm proposed by Back and Tsoi (1991) was not referred
to as IBPTT in the original work. This name was given later by Campolucci
et al. (1995).

5 Note that the truncation in TBPTT, which is applied to input sequences, is
distinct from that in CBPTT, which is applied to intermediate
backpropagated errors.

6 This algorithm has been implemented by Yu and Fazekas (2023) and is
available in the open source TorchAudio package. https://github.com/
pytorch/audio. Accessed 21st July 2023.
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the differentiable filter. However, the authors do note that training a
model with higher order filters (N ≥ 64) tended to lead to instability,
suggesting that even the frequency sampling approach may be
insufficient to solve the aforementioned challenges with cascade
depth (Nercessian et al., 2021).

Diaz et al. (2023) also applied the constrained frequency
sampling method to hybrid parallel-cascade filter network
structures, for the purpose of generating resonant filterbanks
which match the modal frequencies of rigid objects. In
comparing filter structures, authors found that the best
performance was achieved with a greater number of shallower
cascades. Paired with the insight from Colonel et al. (2022), this
suggests that further research is necessary into the stability and
convergence of the frequency sampling method under different filter
network structures, as well as the effect of saturating nonlinearities
on filter coefficients.

Some applications call for all-pass filters–i.e., filters which leave
frequency magnitudes unchanged, but which do alter their phases.
Carson et al. (2023) optimised all-pass filter cascades directly using
an audio reconstruction loss. Due to the difficulty of optimising
time-varying filter coefficients, the time-varying phaser filter is
piecewise approximated by M framewise time-invariant transfer
functions H(m) (z), which are predicted and applied to windowed
segments of the input signal. Overlapping windows are then
summed such that the constant overlap-add property (COLA)
is satisfied.

In the case where an exact sinusoidal decomposition of the
filter’s input signal is known, such as in a synthesiser with additive
oscillators, the filter’s transfer function can be sampled at exactly the
component frequencies of the input. This is applied by Masuda and
Saito (2021) to the task of sound-matching with a differentiable
subtractive synthesiser.

3.1.1.3 Source-filter models and linear predictive coding
The source-filter model of speech production describes speech

in terms of a source signal, produced by the glottis, which is filtered
by the vocal tract and lip radiation. This is frequently approximated
as the product of three LTI systems, i.e., Y(z) = G(z)H(z)L(z) where
G(z) describes the glottal source, H(z) describes the response of the
vocal tract, and L(z) is the lip radiation. Often, L(z) is assumed to be
a first order differentiator, i.e., L(z) = 1 − z−1, and the glottal flow
derivative G′(z) = G(z)L(z) is directly modelled.

Frequently, a local approximation to the time-varying filterH(z)
is obtained via linear prediction over a finite time window of
length M:

y n[ ] � e n[ ] + ∑M
m�1

amy n −m[ ], (4)

where e[n] describes the excitation signal, which is equivalent to the
linear prediction residual. The coefficients am are exactly the
coefficients of an Mth order all-pole filter. This representation is
known as linear predictive coding (LPC).

To the best of our knowledge, Juvela et al. (2019) were the first to
incorporate a differentiable synthesis filter into a neural network
training pipeline. In their method, a GAN was trained to generate
excitation signals e [n], while the synthesis filter coefficients were
directly estimated from the acoustic feature input, i.e., non-

differentiably. Specifically, given a mel-spectrum input,
m � log(Mx̂), where M is the mel-frequency filterbank and x̂ is
the discrete Fourier transform of a signal window, synthesis filter
coefficients am are estimated by approximating the discrete Fourier
spectrum, x̂ ≈ max(M† exp(m), ϵ), from which the autocorrelation
function is computed and the normal equations are solved for am. In
order to backpropagate error gradients through the synthesis filter to
the excitation generator, the filter is approximated for training by
truncating its impulse response, which is equivalent to the frequency
sampling method discussed in Section 3.1.1.2.

LPC has also been used to augment autoregressive neural audio
synthesis models. In LPCNet (Valin and Skoglund, 2019), linear
prediction coefficients were non-differentiably computed from the
input acoustic features, while the sample-level neural network
predicted the excitation. However, in subsequent work (Mv and
Ghosh, 2020; Subramani et al., 2022) this estimation procedure was
made differentiable, allowing synthesis filter coefficients to also be
directly predicted by a neural network. As LPC coefficients can easily
be unstable, both Subramani et al. (2022) and Mv and Ghosh (2020)
opted not to directly predict the LPC coefficients am, but instead
described the system in terms of its reflection coefficients ki. The fully
differentiable Levinson recursion then allowed recovery of the
coefficients am. Specifically, where a(i)m denotes the mth LPC
coefficient in a filter of order i (i.e., M = i), the recursion is defined:

a i( )
m � km if m � i

a i−1( )
m + kia

i−1( )
i−m otherwise.

{ (5)

When ki ∈ (−1, 1) filter stability is thus guaranteed. This is applied by
Subramani et al. (2022) in an end-to-end differentiable extension of
the LPCNet architecture, again with autoregressive prediction of the
excitation signal. Conversely, Mv and Ghosh (2020) employ a
notably simpler source model, consisting of a mixture of an
impulse train and filtered noise signal. Synthesis filter coefficients
were also estimated differentiably by Yoshimura et al. (2023), who
used the truncated Maclaurin series of a mel-cepstral synthesis filter
to enable FIR approximation.

An alternative approach to modelling the glottal source is
offered by Yu and Fazekas (2023), who use a one-parameter (Rd)
formulation of the Liljencrants-Fant (LF) model of the glottal flow
derivative G′(z). The continuous time glottal source is sampled in
both time and the Rd dimension to create a two-dimensional
wavetable. To implement differentiable time-varying LPC
filtering, the authors opt to use a locally stationary
approximation and produce the full signal by overlap-add
resynthesis. Rather than indirect paramaterisation of the filter via
reflection coefficients, the synthesis filter is factored to second order
sections. The coefficient representation and accompanying
constraint to the biquad triangle proposed by Nercessian et al.
(2021) is then used to enforce stability.

Südholt et al. (2023) apply a differentiable source-filter based
model of speech production to the inverse task of recovering
articulatory features from a reference recording. To estimate
articulatory parameters of speech production, Südholt et al. use a
differentiable implementation of the Pink Trombone,7 which

7 https://dood.al/pinktrombone. Accessed 3rd August 2023.
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approximates the geometry of the vocal tract as a series of cylindrical
segments of varying cross-sectional area—i.e., the Kelly-Lochbaum
vocal tract model. Instead of independently defining segment areas,
these are parameterised by tongue position tp, tongue diameter td,
and some number of optional constrictions of the vocal tract. To
estimate these parameters, Südholt et al. derive the waveguide
transfer function and perform gradient descent using the mean
squared error between the log-scaled magnitude response and the
vocal tract response estimated by inverse filtering.

3.1.2 Finite impulse response
A LTI filter is said to have a finite impulse response (FIR), if

given impulse response h(t) there exists a value of T such that h(t) =
0 for all t > T. In discrete time, this is equivalent to a filter’s difference
equation being expressible as a sum of past inputs. Due to the lack of
recursion, FIR filters guarantee stability and are less susceptible to
issues caused by the accumulation of numerical error. However, this
typically comes at the expense of ripple artifacts in the frequency
response, or an increase in computational cost to reduce
these artifacts.

As with IIR filters, the discrete time FIR filter is equivalent to a
common building block of deep neural networks, namely, the
convolutional layer8. Again, linear activations and zero bias yield
the exact filter formulation:

y n[ ] � σ W*h( ) n[ ] + b( ), y n[ ] � W*h( ) n[ ].
Convolutional layer( ) FIR filter( ) (6)

In practice, we frequently wish to produce a time-varying
frequency response in order to model the temporal dynamics of
a signal. The stability guarantees and ease of parallel evaluation
offered by FIR filters mean they are an appropriate choice for
meeting these constraints in a deep learning context, but care
must be taken to compensate for issues such as spectral leakage
and phase distortion using filter design techniques. Moreover, such
compensation must be achieved differentiably.

To the best of our knowledge, the first such example of
differentiable FIR filter design was proposed by Wang and
Yamagishi (2019). This work applied a pair of differentiable
high- and low-pass FIR filters, with a time-varying cutoff
frequency fc [m] predicted by a neural network conditioning
module.9 The filters are then implemented as windowed sinc
filters, with frame-wise impulse responses ~hLP[m, n] and ~hHP[m, n].

Whilst Wang et al. manually derive an the loss gradient with
respect to fc [m], their implementation relies on automatic
differentiation.

While closed form parameterisation of FIR filter families allows
for relatively straightforward differentiable filter implementations,
the complexity of the resulting frequency responses is limited.

However, filter design methods such as frequency sampling and
least squares allow for FIR approximations to arbitrary responses to
be created. The first differentiable implementation of such a method
was proposed by Engel et al. (2020a), whose differentiable spectral-
modelling synthesiser contained a framewise time-varying FIR filter
applied to a white noise signal. To avoid phase distortion and
suppress frequency response ripple, Engel et al. proposed a
differentiable implementation of the window design method for
linear phase filter design.

Specifically, a frequency sampled framewise magnitude response
ĥ[m] ∈ RN is output by the decoder, where m denotes the frame
index and N is the length of the impulse response.10 To recover the
framewise symmetric impulse responses h[m] ∈ RN, they take the
inverse discrete Fourier transform, h[m] � WH

Nĥ[m]), for N-point
DFT matrix WN. The symmetry of the impulse responses is a
sufficient condition for a linear phase response as a function of
frequency. To mitigate spectral leakage, a window function w ∈ RN

is applied to each symmetric impulse response. Finally, the filter is
shifted to causal form such that it is centred at N2 for a window length
of N samples. The filters are then applied to the signal by circular
convolution, achieved via complex multiplication in the
frequency domain.

An alternative differentiable FIR parameterisation was suggested
by Liu et al. (2020), who adopted complex cepstra as an internal
representation. This representation jointly describes the filter’s
magnitude response and group delay, resulting in a mixed phase
filter response. The authors note group delay exerts an influence
over speech timbre, motivating such a design. However, the
performance of this method is not directly compared to the
linear phase method described above. The approximate
framewise impulse response h[m] is recovered from the complex
cepstrum ĥ[m] as follows:

h m[ ] � WH
N exp WNĥ m[ ]( ) (7)

where the exponential function is applied element-wise.
Barahona-Ríos and Collins (2023) applied an FIR filterbank to a

white noise source for sound effect synthesis, but circumvented the
need to implement the filters differentiably by pre-computing the
filtered noise signal and predicting band gains.

3.2 Additive synthesis

Many audio signals contain prominent oscillatory components
as a direct consequence of the physical tendency of objects to
produce periodic vibrations (Smith, 2010). A natural choice for
modelling such signals, additive synthesis, thus also encodes such a
preference for oscillation. Motivated by the signal processing
interpretation of Fourier’s theorem, i.e., that a signal can be
decomposed into sinusoidal components, additive synthesis
describes a signal as a finite sum of sinusoidal components.
Unlike representation in the discrete Fourier basis, however, the

8 Note that the convolution operation in neural networks is usually
implemented as a cross-correlation operation. This is equivalent to
convolution with a kernel reversed along the dimension(s) of
convolution. Hence, we use these terms interchangeably to aid legibility.

9 The specific parameterisations of fc proposed by Wang and Yamagishi
(2019) combine neural network predictions with domain knowledge about
the behaviour of the maximum voice frequency during voiced and
unvoiced signal regions. We omit these details here to focus on the
differentiable filter implementation.

10 Note that here we adopt vector notation for the framewise impulse
response (i.e., ĥ[m]n � ĥ[m,n]) to allow simplify the representation of
operations.
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frequency axis is not necessarily discretised, allowing for direct
specification of component frequencies. The general form for
such a model in discrete time is thus:

y n[ ] � ∑K
k�1

αk n[ ]sin ϕk + ∑n
m�0

ωk m[ ]⎛⎝ ⎞⎠, (8)

where K is the number of sinusoidal components, α[n] ∈ RK is a
time series of component amplitudes, ϕ ∈ RK is the component-wise
initial phase, and ω[n] is the time series of instantaneous component
frequencies. Often, parameters are somehow constrained or jointly
parameterised, such as in the harmonic model where ωk [n] = kω0

[n] for some fundamental frequency ω0[n].
A prominent extension of additive synthesis is spectral modelling

synthesis (Serra and Smith, 1990). In this approach, the residual
signal (i.e., the portion of the signal remaining after estimating
sinusoidal model coefficients) is modelled stochastically, as a noise
source processed by a time varying filter. Such a model was
implemented differentiably by Engel et al. (2020a), using a bank
of harmonic oscillators combined with a LTV-FIR filter applied to a
noise source. Specifically, the oscillator bank was parameterised
as follows:

y n[ ] � A n[ ]∑K
k�1

α̂k n[ ]sin ∑n
m�0

kω0 m[ ]⎛⎝ ⎞⎠, (9)

where A[n] is a global amplitude parameter, and α̂[n] is a
normalised distribution over component amplitudes
(i.e., ∑kα̂k[n] � 1 and α̂k[n]≥ 0). In practice, A[n] and α̂[n] are
predicted at lower sample rates, and interpolated before evaluating
the final signal. The fundamental frequency ω0[n] is obtained by
means of a pitch estimation algorithm–in the paper, CREPE (Kim
et al., 2018) is used–rather than by direct optimisation. It is thus
interesting to note that Eq. (9) is linear with respect to parameters A
[n] and α̂[n], and thus admits a convex optimisation problem for an
appropriate choice of loss function. This is, however, not the case
with respect to ω0[n], which yields oscillatory gradients.

3.2.1 Wavetable synthesis
Historically, a major obstacle to the adoption of additive

synthesis was simply the computational cost of evaluating
potentially hundreds of sinusoidal components at every time
step. A practical solution was to pre-compute the values of a
sinusoid at a finite number of time-steps and store them in a
memory buffer. This buffer can then be read periodically at
varying “frequencies” by fractionally incrementing a circular read
pointer and applying interpolation. The buffer, referred to as a
wavetable, need not contain only samples from a sinusoidal
function, however. Instead, it can contain any values, allowing
for the specification of arbitrary harmonic spectra (excluding the
effect of interpolation error) when the wavetable is read periodically.
Wavetables can thus allow for efficient synthesis of a finite number
of predetermined spectra, or even continuous interpolation between
spectra through interpolation both between and within wavetables.

Shan et al. (2022) introduced a differentiable implementation of
wavetable synthesis, drawing comparison to a dictionary learning
task. In particular, their proposed model learns a finite collection of
wavetables D � wk[n]{ }k∈ 1...K{ }. The fractional read position of the

wavetables is determined by integrating the ω0 parameter which, as
in the harmonic oscillator bank of Engel et al. (2020a), is provided by
a separate model. To produce a particular timbre, the model predicts
coefficients ck for a weighted sum over the wavetables, such that∑K

k�1ck � 1 and ck ≥ 0.
Notably, Shan et al. found that this approach outperformed the

DDSP additive model in terms of reconstruction error when using
20 wavetables, and performed almost equivalently with only
10 wavetables. Further, this method provided a roughly 12×
improvement in inference speed, although as the authors note
this is likely to be related to the 10-fold decrease in the number
of parameter sequences that require interpolation.

3.2.2 Unconstrained additive models
The implementations discussed thus far are all, in a sense,

constrained additive models. This is because a harmonic
relationship between sinusoidal component frequencies is
enforced. By contrast, the general model form illustrated in Eq. 8
is unconstrained, which is to say that its frequency parameters are
independently specified. In some circumstances, the greater freedom
offered by such a model may be advantageous–for example, many
natural signals contain a degree of inharmonicity due to the
geometry or stiffness of the resonating object. However, vastly
fewer examples of differentiable unconstrained models exist in
the literature than of their constrained counterparts.

Nonetheless, Engel et al. (2020b) introduced a differentiable
unconstrained additive synthesiser, which they applied to the task of
monophonic pitch estimation in an analysis-by-synthesis
framework. The differentiable unconstrained model follows the
form in Eq. 8, with the omission of the initial phase parameter.
Thus, unlike their differentiable harmonic model, there is no
factorised global amplitude parameter–instead each sinusoidal
component is individually described by its amplitude envelope αk
[n] and frequency envelope ωk[n].

Optimisation of this model, however, is not as straightforward as
the constrained harmonic case where an estimate of ω0[n] is
provided a priori. The non-convexity of the sinusoidal oscillators
with respect to their frequency parameters leads to a challenging
optimisation problem, which does not appear to be directly solvable
by straightforward gradient descent over an audio loss function. This
was experimentally explored by Turian and Henry (2020) who
found that, even in the single sinusoidal case, gradients for most
loss functions were uninformative with respect to the ground truth
frequency. Thus, Engel et al. incorporated a self-supervised pre-
training stage into their optimisation procedure. Specifically, a
dataset of synthetic signals from a harmonic-plus-noise
synthesiser was generated, for which exact sinusoidal model
parameters were know. This was used to pretrain the sinusoidal
parameter encoder network with a parameter regression loss
(discussed further in Section 4.2), which circumvents the non-
convexity issue.

Subsequently, Hayes et al. (2023) proposed an alternate
formulation of the unconstrained differentiable sinusoidal model,
which aimed to circumvent the issue of non-convexity with respect
to the frequency parameters. Specifically, they replaced the
sinusoidal function with a complex surrogate, which produced a
damped sinusoid:
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y n[ ] � ∑K
k�1

Re znk{ } � ∑K
k�1

zk| |n cos n∠zk, (10)

whereRe denotes the real part of a complex variable, |z| denotes the
complex modulus, ∠z denotes the complex phase, and zk are the
complex parameters of the model which jointly encode both
frequency and damping. Note that as the sample index n
becomes the exponential parameter, this model does not directly
accommodate time-varying frequency parameters. However, at the
time of writing, no published work exists applying this surrogate to
enable differentiable unconstrained additive synthesis.

3.3 Subtractive synthesis

In contrast with additive methods, subtractive synthesis
describes a family of methods in which a source signal, rich in
frequency components, is shaped into a desired frequency response
by the removal or attenuation of certain frequencies (Bilbao, 2009).
This approach typically employs filters to shape the sound by
attenuating or emphasizing specific frequency components. The
task of generating a sound is then reduced to designing
appropriate filters. The reader might note that this approach
bears a striking similarity to the source-filter model of speech
production, in which a spectrally rich signal is shaped by a series
of filters. However, the source-filter models discussed so far are
physically motivated by a tube model of the vocal tract, whereas
subtractive synthesis refers to the more general class of methods that
involve spectral attenuation of a source signal.

Sawtooth and square waveforms are commonly used as source
signals in subtractive synthesis due to their dense harmonic spectra,
with the former containing energy at all harmonic frequencies, and
the latter only at odd harmonic frequencies. The true waveforms
contain discontinuities which can lead to aliasing, and also pose a
challenge for automatic differentiation. For this reason, bandlimited
waveforms were produced by Masuda and Saito (2021) using a
constrained version of the differentiable harmonic oscillator bank
for the purpose of subtractive synthesiser sound matching.
Specifically, they produced anti-aliased approximations of square
and sawtooth waveforms by summing harmonics at pre-determined
amplitudes.

ysaw n[ ] � ∑K
k�1

2
πk

sin 2πk ∑n
m�0

ω0 m[ ]⎛⎝ ⎞⎠ (11)

ysquare n[ ] � ∑K
k�1

4
π 2k − 1( ) sin 2π 2k − 1( ) ∑n

m�0
ω0 m[ ]⎛⎝ ⎞⎠. (12)

Masuda et al. also introduced a waveform interpolation parameter p,
such that y [n] = pysaw [n] + (1 − p)ysquare [n], allowing for
differentiable transformation between these fixed spectra. The
resulting waveform mixture was then filtered by the method
described in Section 3.1.1.2.

A similar bandlimited sawtooth signal was used as a source in
SawSing (Wu D.-Y. et al., 2022), a differentiable subtractive singing
voice vocoder. This signal was shaped, however, by a linear time-
varying FIR filter, similar to the one used with white noise by Engel
et al. (2020a).

The differentiable WORLD vocoder (Nercessian, 2023) uses a
bandlimited pulse-train as its source signal, implemented
similarly to the aforementioned square and sawtooth
oscillators. This is also filtered framewise by frequency domain
multiplication with a filter response directly derived from the
WORLD feature representation, consisting of an aperiodicity
ratio and a spectral envelope.

3.4 Non-linear transformations

The techniques discussed to this point are predominantly linear
with respect to the parameters through which gradients are
backpropagated. Through the 60s, 70s and 80s a number of
digital synthesis techniques emerged which involved non-linear
transformations of audio signals and/or synthesiser parameters.
This approach typically results in the introduction of further
frequency components, with frequencies and magnitudes
determined by the specifics of the method. As such, these
methods are commonly collectively known as distortion or non-
linear synthesis, and they became popular as alternatives to additive
and subtractive approaches due to the comparative efficiency with
which they could produce varied and complex spectra
(Bilbao, 2009).

3.4.1 Waveshaping synthesis
Digital waveshaping synthesis (Le Brun, 1979) introduces

frequency components through amplitude distortion of an audio
signal. Specifically, for a continuous time signal that can be exactly
expressed as a sum of stationary sinusoids,
i.e., x(t) � ∑K

k�1αk sinfkt, the application of a nonlinear function
σ produces a signal that can be expressed as a potentially infinite sum
of sinusoids at linear combinations of the input frequencies.

In the original formulation of waveshaping synthesis, proposed
by Le Brun (1979), the input signal is a single sinusoid. The
nonlinear function σ, also referred to as the shaping function, is
specified as a sum of Chebyshev polynomials of the first kind Tk,
allowing. These functions are defined such that the kth polynomial
transforms a sinusoid to its kth harmonic: Tk (cos θ) = cos kθ. In this
way, a shaping function can be easily designed that produces any
desired combination of harmonics. Further efficiency gains can be
achieved by storing this function in a memory buffer and applying it
to a sinusoidal input by interpolated fractional lookups, in a manner
similar to wavetable synthesis. Timbral variations can be produced
by altering the amplitude of the incoming signal and applying a
compensatory normalisation after the shaping function.

A differentiable waveshaping synthesiser was proposed by Hayes
et al. (2021). This approach replaced the Chebyshev polynomial
method for shaping function design with a small multilayer
perceptron σθ. To allow time-varing control over timbral content,
a separate network predicted affine transform parameters αN, βN,
αaβa, applied to the signal before and after the shaper network,
giving the formulation:

y n[ ] � αNσθ αax n[ ] + βa( ) + βN. (13)
In practice, the network is trained with a bank of multiple such
waveshapers.
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3.4.1.1 Neural source-filter models
As noted by Engel et al. (2020a), the neural source-filter model

introduced by Wang et al. (2019b) can be considered a form of
waveshaping synthesiser. This family of models, based on the
classical source-filter model, replaces the linear synthesis filter
H(z) with a neural network fθ, which takes a source signal x [n]
as input, and also accepts a conditioning signal z [n] which alters its
response. Due to the nonlinearity of fθ, we can interpret its behaviour
through the lens of waveshaping–that is, it is able to introduce new
frequency components to the signal. Thus, for a purely harmonic
source signal, a harmonic output will be generated, excluding the
effects of aliasing.

The proposed neural filter block follows a similar architecture to
a non-autoregressive WaveNet (van den Oord et al., 2016), featuring
dilated convolutions, gated activations, and residual connections.
Wang et al. experimented with both a mixed sinusoid-plus-noise
source signal processed by a single neural filter pathway, and
separate harmonic sinusoidal and noise signals processed by
individual neural filter pathways. Later extensions of the
technique included a hierarchical neural source-filter model,
operating at increasing resolutions, for musical timer synthesis
Michelashvili and Wolf (2020), and the introduction of quasi-
periodic cyclic noise as an excitation source, allowing for more
realistic voiced-unvoiced transitions (Wang and Yamagishi, 2020).

3.4.2 Frequency modulation
Frequency modulation (FM) synthesis (Chowning, 1973)

produces rich spectra with complex timbral evolutions from a
small number of simple oscillators. Its parameters allow
continuous transformation between entirely harmonic and
discordantly inharmonic spectra. It was applied in numerous
commercially successful synthesisers in the 1980s, resulting in its
widespread use in popular and electronic music.

A simple stationary formulation, consisting of one carrier
oscillator (αc, ωc, ϕc) and one modulator (αm, ωm, ϕm) is given by:

y n[ ] � αc sin ωcn + ϕc + αm sin ωmn + ϕm( )( ). (14)
For a sinusoidal modulator, FM synthesis is equivalent to phase
modulation up to a phase shift. Phase modulation is often preferred
in practice, as it does not require integration of the modulation
signal to produce an instantaneous phase value.

More complex synthesisers can be constructed by connecting
multiple modulators and carriers, forming a modulation graph.11

This graph may contain cycles, corresponding to oscillator
feedback, which can be implemented in discrete time with
single sample delays. Caspe et al. (2022) published the first
differentiable FM synthesiser implementation, which was able
to learn to control the modulation indices of modulation graphs
taken from the Yamaha DX7, an influential FM synthesiser. To
increase the flexibility of the DDX7 approach, Ye et al. (2023)
applied a neural architecture search algorithm over the modulation
graph, with the intention of allowing optimal FM synthesiser
structures to be inferred from target audio.

As the gradients of an FM synthesiser’s output with respect to
the majority of its parameters are oscillatory, optimisation of a
differentiable implementation is challenging, due to the
aforementioned issues with sinusoidal parameter gradients
(Turian and Henry, 2020; Hayes et al., 2023). For this reason, the
differentiable DX7 of Caspe et al. (2022) relied on fixed oscillator
tuning ratios, specified a priori, enforcing a harmonic spectral
structure. In this sense, FM synthesis continues to be an open
challenge, representing a particularly difficult manifestation of the
previously discussed issues with non-convex DDSP.

3.5 Modulation signals

Automatic modulation of parameters over time is a crucial
component of many modern audio synthesisers, especially those
used for music and sound design. Control signals for modulation are
commonly realised through envelopes, which typically take the value
of a parametric function of time in response to a trigger event, and
low frequency oscillators (LFOs), which oscillate at sub-audible
(< 20Hz) frequencies. Estimating the parameters of envelopes
and LFOs is thus valuable for sound matching tasks. This was
addressed non-differentiably by Mitcheltree et al. (2023), who
estimated LFO shapes from mel spectrograms.

In the context of modelling an analog phaser pedal, Carson et al.
(2023) produced a differentiable LFO model using the complex
sinusoidal surrogate method of Hayes et al. (2023) in combination
with a small waveshaper neural network. Using this technique, they
were able to directly approximate the shape of the LFO acting on the
all-pass filter break frequency by gradient descent.

Masuda and Saito (2023) introduced a differentiable attack-
decay-sustain-release (ADSR) envelope12 for use in a sound
matching task. Specifically, they defined the envelope as follows:

u t( ) � t · vmax

tatk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
0,vmax[ ]

+ t − tatk( ) · vsus − vmax

tdec

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
vsus−vmax ,0[ ]

+ − t − toff( ) · vsus
trel

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ −vsus ,0[ ]

, (15)

where tatk, tdec, trel, toff represent the attack, decay, release, and note
off times, respectively; vsus is the sustain amplitude and vmax is the
peak amplitude; and |x|[a,b] ≜ min (max (x, a), b). Through sound
matching experiments and gradient visualisations, they demonstrate
that their model is capable of learning to predict parameters for the
differentiable envelope, though note that this constraint means that
subtle variations in real sounds can not be entirely captured.

4 Loss functions and training objectives

A central benefit of DDSP is that the training loss function can
be defined directly in the audio domain, allowing the design of losses
which emphasise certain desirable signal characters, for example,
through phase invariance or perceptually-informed weighting of

11 This graph is sometimes referred to in commercial synthesisers as
an “algorithm”.

12 Far from being an arbitrary choice, this is perhaps the most commonly
used parametric envelope generator in synthesisers.
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frequency bands. Nonetheless, many works we reviewed combined
audio losses with other forms of training objective, including
parameter regression and adversarial training. In this section, we
review the most commonly used such loss functions.

We note that deep feature loss, sometimes referred to as
“perceptual loss” — that is, distances between intermediate
activations of pretrained neural networks—have been explored,
including the use of CREPE (Kim et al., 2018) embeddings
(Engel et al., 2020a; Michelashvili and Wolf, 2020). Engel et al.
note that this loss during unsupervised learning of pitch.
Additionally, Turian et al. (2021) evaluated a number of audio
representations (DSP-based and learned representations),
comparing them on distance-based ranking tasks using
synthesised sounds, and found that OpenL3 (Cramer et al., 2019)
performed well. However, Masuda and Saito (2023) remarked that
preliminary results using OpenL3 for sound matching worked
poorly. Since this initial work on the topic, relatively little
attention has been devoted to exploring such distances for DDSP
training; however, they may be a promising direction for
future work.

4.1 Audio loss functions

Audio loss functions compare a predicted audio signal ŷ[n]
to a ground truth signal y[n]. The simplest such loss function is
thus a direct distance between audio samples in the
time domain:

Lwav y, ŷ( ) � ∑
n

y n[ ] − ŷ n[ ]���� ����p (16)

where ‖ · ‖p is the Lp norm. Engel et al. (2020a) note that this loss is
typically not ideal due to the weak correspondence between
individual time-domain audio samples and auditory perception.
For example, a time-domain loss penalises imperceptible shifts in
oscillator phase, which may not be desirable, depending on the
behaviour of a particular synthesiser and target application (Engel
et al., 2020a; Liu et al., 2020; Mv and Ghosh, 2020). Wang and
Yamagishi (2019) applied a phase difference loss, but noted that
despite the loss values falling during training, speech quality was not
improved over a randomly initialized phase spectrum. Conversely,
Webber et al. (2023) explicitly modelled phase in the frequency
domain, finding that an L2 time-domain loss helped reduce
audible artifacts.

The predominant approach to formulating an audio loss for
DDSP tasks, however, is based on magnitude spectrograms. These
approaches are often referred to as spectral loss. While numerous
variations on this approach, we found three to recur commonly in
the literature.

1. Spectral convergence loss (Arık et al., 2019)

Lsc y, ŷ( ) � STFT y( )∣∣∣∣ ∣∣∣∣ − STFT ŷ( )∣∣∣∣ ∣∣∣∣���� ����F
STFT y( )∣∣∣∣ ∣∣∣∣���� ����F (17)

2. Log magnitude spectral loss (Arık et al., 2019)

Llog y, ŷ( ) � log STFT y( )∣∣∣∣ ∣∣∣∣ − log STFT ŷ( )∣∣∣∣ ∣∣∣∣���� ����1 (18)

3. Linear magnitude spectral loss

Llin y, ŷ( ) � STFT y( )∣∣∣∣ ∣∣∣∣ − STFT ŷ( )∣∣∣∣ ∣∣∣∣���� ����1 (19)

where ‖ · ‖F and ‖ · ‖1 denote the Frobenius and L1 norms,
respectively, and |STFT(·)| is the magnitude spectrogram from
the short-time Fourier transform. A weighting of 1

N is sometimes
applied to Llog and Llin, where N is the number of STFT bins
(Yamamoto et al., 2020). Perceptually motivated frequency scales,
like the mel scale, can also be applied to spectrograms. Arık et al.
(2019) note that the spectral convergence loss “emphasises highly on
large spectral components, which helps in early phases of training,”
whereas log magnitude spectral loss tend to help fit small amplitude
components, which are to be more important later in training.

Wang and Yamagishi (2019) proposed computing a spectral loss
using multiple STFT window sizes and hop lengths, aggregating the
outputs into a single loss value.13 This technique has since come to be
known as the multi-resolution STFT (MRSTFT) loss (Yamamoto
et al., 2020) or multi-scale spectral loss (MSS) loss (Engel et al.,
2020a). The motivation behind this formulation is to compensate for
the time-frequency resolution tradeoff inherent to the STFT.

A general form for MRSTFT losses is thus given by a weighted
sum of the different spectral loss formulations at different
resolutions:

LMRSTFT � ∑
k∈K

αscLsc,k + αlogLlog,k + αlinLlin,k (20)

where K is the set of STFT configurations, L·,k is a spectral loss
computed with a particular configuration, and α is the weighting for
a loss term.14 A consensus on the best spectral loss configuration has
not emerged, suggesting that tuning of such losses is highly
task-dependent.

Mel scaled spectral losses have also been used in a number of
works (Mv and Ghosh, 2020; Kaneko et al., 2022; Choi H.-S. et al.,
2023; Diaz et al., 2023; Song et al., 2023; Watts et al., 2023), after
Fabbro et al. (2020) introduced the multi-resolution formulation
and Kong et al. (2021) demonstrated their suitability for using in
conjunction with adversarial objectives.

A large number of different multi-resolution configurations
have been explored. Wu D.-Y. et al. (2022) suggested just four
resolutions was sufficient for satisfactory results. Liu et al. (2020), on
the other hand, used 12 different configurations noting that
increasing this number resulted in fewer artefacts. (Barahona-
Ríos and Collins, 2023). showed that a very small hop-size of
8 samples, with a window length of 32 samples, allowed good
transient reconstruction. This is congruent with the findings of
Kumar et al. (2023), who noted a small hop-size improved transient
reconstruction in their neural audio codec.

Martinez Ramírez et al. (2020) noted that filtering can introduce
frequency-dependent delays and phase inversions, which can cause
problems for auditory loss functions. They proposed a delay

13 Wang et al. used a slightly different formulation of spectral loss they called
spectral amplitude distance.

14 We point readers to the auroloss python package (Steinmetz and Reiss,
2020) for implementations of these methods and more auditory loss
functions not mentioned here. Available on GitHub https://github.com/
csteinmetz1/auraloss. Accessed 25th August 2023.
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invariant loss to address this, which computes an optimal delay
between y[n] and ŷ[n] using a cross-correlation function, and
evaluates loss functions on time-aligned waveforms.

Wang and Yamagishi (2020) observed issues learning a stable
pitch with the introduction of cyclic noise and proposed a masked
spectral loss as a solution, which evaluates loss only in frequency
bins containing harmonics of the known fundamental frequency.
This is intended to penalise only harmonic mismatch, instead of
accounting for the full spectral envelope. Wu D.-Y. et al. (2022)
trained their parameter estimation model to predict f0 from a mel
spectrogram and used an explicit f0 regression loss where both the
ground truth and target f0 were extracted using theWORLD vocoder
(Morise et al., 2016), noting that MRSTFT alone was not sufficient to
learn to reconstruct singing voices in their case while jointly
learning f0.

4.2 Parameter loss and self-supervision

Historically, parameter loss was commonly used in sound
matching tasks involving black box or non-differentiable
synthesisers (Yee-King et al., 2018; Barkan et al., 2019). This was,
however, identified as a sub-optimal training objective (Esling et al.,
2020), as synthesisers are ill-conditioned with respect to their
parameters—that is, small changes in parameter space may yield
large changes in the output.

However, with a differentiable synthesiser, parameter loss can be
combined with auditory loss functions as a form of self-supervision,
seemingly helping to avoid convergence on bad minima during
training (Engel et al., 2020b; Masuda and Saito, 2023). For most
parameters, loss is computed directly between estimated and ground
truth parameter values, where ground truth parameters are
randomly sampled to form a synthetic dataset of audio-
parameter pairs.

Engel et al. (2020b) used a parameter regression pretraining
phase over a large dataset of synthetic audio signals with complete
parameter annotations. This enabled them to the fine-tune their
network with an unconstrained differentiable sinusoidal model in
conjunction with several other DDSP components for self-
supervised pitch estimation. They additionally introduced a
sinusoidal consistency loss, which is a permutation invariant
parameter loss inspired by the two-way mismatch algorithm, to
measure the error between sets of parameters for sinusoids
representing partials of a target sound.

In a sound matching task with a differentiable subtractive
synthesiser, Masuda and Saito (2021) observed that training only
with spectral loss was ineffective, speculating that there was not a
clear relationship between the loss and subtractive synthesis
parameters. In subsequent work (Masuda and Saito, 2023), they
used a combination of parameter loss, with a synthetic dataset, and
various methods for introducing out-of-domain audio during
training with a spectral loss. Through this procedure, they noted
that certain parameters, such as the frequency of oscillators and
chorus delay, were poorly optimised by a spectral loss.

Despite their tenuous perceptual correspondence, an advantage
of parameter losses is their relative efficiency, particularly when
parameters are predicted globally, or below audio sample rate. Han
et al. (2023) proposed a method for reweighting the contributions of

individual parameters to provide the best quadratic approximation
of a given “perceptual” loss—i.e., a differentiable audio loss with
desirable perceptual qualities, such as MRSTFT or joint time-
frequency scattering (Muradeli et al., 2022). The proposed
technique requires that loss gradients with respect to ground
truth to parameters be evaluated once before training, limiting
the technique to synthetic datasets, but the advantage is that
online backpropagation through the differentiable synthesiser can
be effectively avoided.

4.3 Adversarial training

Generative adversarial networks (Goodfellow et al., 2014)
consist of two components: a generator, which produces
synthetic examples, and a discriminator, which attempts to
classify generated examples from real ones. These components
are trained to optimise a minimax game. In later work, this
adversarial training formulation was combined with a
reconstruction loss (Isola et al., 2017) for image generation, a
technique which has since become popular in audio generation
(Kong et al., 2020).

From the perspective of reconstruction, the main motivation for
adversarial training is that it tends to improve the naturalness and
perceived quality of results (Michelashvili and Wolf, 2020; Choi H.-
S. et al., 2023) and enables learning fine temporal structures (Liu
et al., 2020), particularly when a multi-resolution discriminator is
used (You et al., 2021). Further, despite using a phase invariant
reconstruction loss, both Liu et al. (2020) and Watts et al. (2023)
observed that adversarial training improved phase reconstruction
and reduce phase-related audio artefacts. However, these benefits
come at the expense of a more complex training setup.

Several variations on adversarial training for DDSP synthesis
have been explored. The HiFi-GANmethodology (Kong et al., 2020)
has been particularly popular (Kaneko et al., 2022; Choi H.-S. et al.,
2023; Watts et al., 2023; Webber et al., 2023). This involves multiple
discriminators operating at different periods and scales in a least-
squares GAN setup, and includes a feature matching loss Kumar
et al. (2019), which involves using distances between discriminator
activations as an auxiliary loss. Others have used a hinge loss (Liu
et al., 2020; Caillon and Esling, 2021; Nercessian, 2023) and a
Wasserstein GAN (Juvela et al., 2019). Caillon and Esling (2021)
and Watts et al. (2023) both train in two stages, first optimising for
reconstruction, then introducing adversarial training to fine-tune
the model.

5 Evaluation

Whilst loss functions may be selected to act as a proxy for certain
signal characteristics, perceptual or otherwise, loss values typically
can not be assumed to holistically describe the performance of a
given method. Other methods must thus be used to evaluate DDSP-
based synthesisers. In this section, we survey these methods and
highlight trends within the reviewed literature.

Evaluation methods can be broadly subdivided into subjective
and objective methods. In both speech and musical audio synthesis,
subjective evaluations in the form of listening tests have been argued
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to provide a more meaningful assessment of results Wagner et al.
(2019); Yang and Lerch (2020), given the inherent subjectivity of the
notion of audio quality. This preference was reflected in the DDSP-
based speech synthesis literature we reviewed, in which every paper
conducted a listening test. Conversely, only slightly over half of the
work reviewed on music and singing voice synthesis conducted a
subjective evaluation of results. This discrepancy may be partially
explained by the existence of standards for subjective evaluation in
speech research, in contrast to music. That being said, it became
clear through this review that there exists no single unified method
for evaluating DDSP synthesis results.

In the following subsections we detail the more widely used
evaluation methods, and discuss how these have been used in work
to date. We also tally the number of uses of these approaches
in Table 3.

5.1 Objective evaluation

An objective evaluation typically involves the calculation of
some number of metrics from the outputs of a given model, or
from other characteristics of the model such as the time taken to
perform a given operation. While such metrics may not directly
correspond to perceptual attributes of synthesised signals (Manocha
et al., 2022; Vinay and Lerch, 2022), they may be attractive as an

alternative to a listening test (Yang and Lerch, 2020) due to their lack
of dependency on recruiting participants and their reproducibility.
They are also frequently employed alongside listening tests, in which
case they may be used to probe specific attributes, or to facilitate
comparison between different experiments.

5.1.1 Audio similarity metrics
Perhaps the most obvious target for a metric of audio quality is,

when appropriate to the task, a model’s ability to reconstruct a given
piece of audio. Such evaluations necessarily require ground truth
audio, which is typically available in resynthesis tasks such as copy
synthesis and musical instrument modelling. Objective evaluation
metrics that operate on synthesized and ground truth audio are
referred to as audio similarity metrics (also known as full-reference
or intrusive). This is in contrast to no-reference metrics (also known
as reference-free or non-intrusive) (Manocha et al., 2022), which do
not require a ground truth audio.

Perhaps the simplest audio similarity metric is a waveform
distance, taken directly between time-domain samples. These are
used infrequently for evaluation of DDSP-based synthesisers, likely
because of the emphasis they place on phase differences, which are
not necessarily perceived, and are often not explicitly modelled. Yu
and Fazekas (2023) are an exception—they used an L2 waveform loss
to highlight the ability of their differentiable source-filter approach
to reconstruct phase.

TABLE 3Methods for evaluating DDSP-based synthesis systems, listed with the number of times each method was used in the literature we surveyed (see Table 1).
Methods with only one usage are grouped under the “Other” heading.

Evaluation type Evaluation method Music Speech Singing

Objective Multi-scale spectral distance 6 1 2

Extracted control (e.g., f0, loudness, etc.) distance 3 3 2

Fréchet audio distance 4 1 1

Log spectral distance 4 1 1

MFCC distance 2 1 0

Estimated control distance 2 0 1

Parameter distance 1 1 0

Other 0 4 1

No objective evaluation 4 5 2

Subjective Mean opinion score (MOS) 4 12 4

MUSHRA or other multi-stimulus 1 7 0

Preference ranking 4 0 0

Informal evaluation 2 0 1

Other 2 0 0

No subjective evaluation 5 0 1

Complexity Real-time factor 1 5 2

Computation time 1 4 0

FLOPS 0 4 0

Other 0 1 0

No complexity evaluation 14 9 4
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Most commonly reported are distances computed between time-
frequency representations of audio signals, sometimes referred to as
spectral error. Multi-scale spectrogram error, which is often also
used as a loss function, was reported in a number of music (Masuda
and Saito, 2021; Wu D.-Y. et al., 2022; Renault et al., 2022; Shan
et al., 2022), singing (Yu and Fazekas, 2023), and speech evaluations
(Nercessian, 2021). Other spectral distances reported included log-
spectral distance Masuda and Saito (2021); Subramani et al. (2022),
log mel-spectral distance Nercessian (2023), and mel-cepstrum
distortion (MCD) (Masuda and Saito, 2023).

Similarity metrics motivated by perception, such as the
Perceptual Evaluation of Speech Quality (PESQ) (International
Telecommunication Union, 2001) were developed as alternatives
to costly subjective evaluations. However, we observed that these
saw limited use in the evaluation of DDSP vocoders Mv and
Ghosh (2020).

Similarity metrics have also been designed around the
extraction of higher level signal features. For example, the
ability of a model to accurately reconstruct fundamental
frequency has been evaluated by measuring the MAE error
between f0 extracted from ground truth and synthesized results.
Results are typically compared to neural audio synthesis baselines
(e.g., WaveRNN) and support the claim that DDSP models are
better at preserving pitch (Engel et al., 2020a; Wu D.-Y. et al.,
2022). A similar evaluation has also been applied for loudness
(Engel et al., 2020a; Kawamura et al., 2022).

5.1.2 Reference-free audio metrics

In contrast to audio similarity metrics, reference free metrics
provide an indication of audio quality without the need for a ground
truth audio signal. The Fréchet Audio Distance (FAD) (Kilgour
et al., 2019) is an example of such a metric, and was originally
developed for music enhancement evaluation. The FAD is computed
by fitting multivariate Gaussian distributions to two sets of neural
embeddings: one computed over “clean” audio (the background set)
and another computed over test audio. The Fréchet distance is then
computed between these distributions. Typically, a pre-trained
VGGish model (Hershey et al., 2017) is used to compute
embeddings, a formulation that we found to recur in evaluation
of both music (Hayes et al., 2021; Caspe et al., 2022; Ye et al., 2023)
and singing voice (Wu D.-Y. et al., 2022; Yu and Fazekas, 2023)
papers we reviewed. In the speech domain, (Kaneko et al., 2022),
used Fréchet wav2vec distance (cFW2VD), which replaced the
VGGish model with wav2vec.

Some of the work we reviewed observed a correlation between
the FAD and their subjective evaluations (Hayes et al., 2021;
Kaneko et al., 2022), which is consistent with the findings of
Manocha et al. (2022) who also noted that reference-free
metrics aligned better with human judgements than audio
similarity metrics. However, these results are not universal and
there exist multiple counter-examples in the literature (Vinay and
Lerch, 2022; Choi K. et al., 2023). These discrepancies may be
explained by sample-size bias or the fact that VGGish embeddings
are suboptimal for FAD (Gui et al., 2023). In general, the
development of a reliable proxy for perceived quality of audio
synthesis algorithms remains an open research question.

5.1.3 Parameter reconstruction
Parameter reconstruction metrics compare synthesizer

parameters or latent parameters to ground truth values. These
metrics are more common in tasks such as sound matching and
performance rendering, where ground truth parameters are either
known a priori or can be straightforwardly extracted. Absolute
(Masuda and Saito, 2023; Südholt et al., 2023) and squared Wu
et al. (2022c) distances have both seen use for this purpose.
Parameter distances can provide insight into how well a method
is able to reconstruct synthesis parameters, although it has been
shown in previous work that parameter error and audio similarity
are not well-aligned (Esling et al., 2020), at least in the case of music
production-focused musical synthesizers. Parameter error for
physical models or spectral modeling synthesizers may thus
correlate better with perceived quality.

5.1.4 Computational complexity
A repeatedly cited motivation for the use of DDSP is an

improvement in computational efficiency and reduction in
inference speed, particularly when compared to other neural
vocoders or synthesisers. This is corroborated by the substantial
number of reviewed papers which included explicit evaluation of
computational efficiency. Performing a real-time factor (RTF) test is
the most common method for measuring inference speed. The
metric is defined as

RTF � tp
ti

(21)

where ti is the input target duration (e.g., 1 s) and tp is the time taken
to synthesise that much audio. Any value RTF <1.0 indicates a real-
time operation. Variations on RTF include reporting the number of
samples generated per second Caillon and Esling (2021); Wang et al.
(2019a) and times faster than real-time (Kaneko et al., 2022), which
is the inverse of Eq. 21. A number of factors contribute to RTF tests
including hardware, programming language, audio sampling rate,
duration of test samples, and model size15.

The selection of duration ti has a bearing on RTF results and has
interesting implications on the end application. In speech,
utterance-by-utterance processing is a typical use-case for on-
device synthesis Webber et al. (2023). Interactive music
applications, on the other hand, typically use buffer-by-buffer
processing and require a buffer size corresponding to 10 ms or
less to fulfill the low-latency constraint for real-time interaction.
Maintaining an RTF <1.0 with such small buffer sizes is a
challenging constraint, as RTF values can be inversely correlated
with buffer size Hayes et al. (2021).

Computational complexity can also be measured by counting
the number of floating-point operations required to synthesize one
second of audio (FLOPS) (Liu et al., 2020; Tian et al., 2020; Watts
et al., 2023). In theory, this provides a hardware agnostic
measurement of computational complexity and provides fair
method for comparing algorithms (Schwartz et al., 2020).
However, running time does not always perfectly correlate with

15 RTF tests may be performed in an end-to-end fashion and include neural
networks used to predict synthesis parameters or separately on only the
vocoder/synthesizer component.
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FLOPS; for instance, the parallelism provided by GPUs offers speed-
ups for convolutional layers that are not possible on CPUs (Asperti
et al., 2022).

5.2 Subjective evaluation

Evaluation of audio quality using listening tests is considered the
“gold standard”Manocha et al. (2022) in speech research. A number
of different listening test variations exist, however the most
commonly used for DDSP evaluations is the absolute category
rating (ACR) test from the ITU-T recommendation
P.800 International Telecommunication Union (1996), also
known as “mean opinion score” (MOS). When assessing
synthesis quality, participants are provided with a set of audio
samples and asked to rate each on a five-point Likert scale
according to a prompt, usually related to audio quality. The
majority of subjective evaluations we reviewed used MOS
evaluations and a number reported using crowd-sourcing
platforms to recruit participants (Nercessian, 2021; Subramani
et al., 2022). MOS was also used to evaluate the quality of TTS
applications of DDSP synthesisers (Juvela et al., 2019; Wang and
Yamagishi, 2019; Liu et al., 2020; Choi H.-S. et al., 2023; Song
et al., 2023).

Another listening test format, originally developed for
evaluating audio codecs16, is the MUlti Stimulus test with Hidden
Reference and Anchor (MUSHRA) evaluation (International
Telecommunication Union, 2015). Similar to MOS, MUSHRA
tests ask participants to rate the quality of an audio recording.
However, these use continuous sliders as opposed to a Likert scale
and, importantly, they involve comparing a number of stimuli side-
by-side to a piece of reference audio. Amongst these stimuli are the
hidden reference and anchor, which provide a built-in mechanism
to identify listeners that may need excluding from results due to
suboptimal listening conditions, poor compliance, or unreported
hearing differences—considerations that are especially important
when conducting online listening tests. Screening criteria have also
been developed for online MOS evaluations Ribeiro et al. (2011).

It is less clear how subjective evaluation of tasks like timbre
transfer and voice conversion should be performed. In voice
conversion tasks a MOS test can be conducted and participants
asked to rate the speaker similarity and naturalness/quality of an
utterance (Nercessian, 2021; Guo H. et al., 2022; Choi H.-S. et al.,
2023). A challenge with rating speaker similarity, as reported by
Wester et al. (2016), is that it is not necessarily a familiar task to
listeners—humans are more adept at recognizing individual
speakers as opposed to evaluating how close one speaker is to
another. Wester et al. instead propose a pairwise evaluation that
asks participants to report their confidence in the identity of voice.
Nonetheless, the DDSP papers we reviewed used the more
conventional MOS scale. Timbre transfer has similarly been
evaluated using an instrument similarity score and a melody
similarity score using a MOS test Michelashvili and Wolf (2020).

Performance rendering applications are additionally tasked with
modelling of musical expression, itself a challenging task and under-
specified problem, with results that are open to subjective
interpretation. The evaluation of these systems has similarities
with the evaluation of generative music models (Yang and Lerch,
2020). A commonly used method in generative modelling,
conceptually related to a Turing test, is to ask participants
whether a result sounds like it was produced by a human. In the
context of DDSP-based performance rendering, a variant of this
approach was used by Castellon et al. (2020), who asked participants
to select the recording that sounds “more like a real human playing a
real instrument”. Wu et al. (2022c) used a similar prompt for violin
recordings.

We note that while a majority of the reviewed papers that performed
a subjective evaluation reported confidence intervals around their results,
not all papers performed statistical hypothesis testing.

6 Discussion

In this section we discuss both the strengths and limitations of
DDSP for audio synthesis. For those new to the topic, we hope to
assist in evaluating the suitability of DDSP for applications and
research directions of interest. With more experienced practitioners
in mind, we seek to highlight promising directions for future work
and present open research questions that we argue hinder wider
applicability and adoption of DDSP for audio synthesis.

6.1 DDSP and inductive bias

Underpinning DDSP, and the related field of differentiable
rendering Kato et al. (2020), is the notion of incorporating a
domain-appropriate inductive bias. Imposing strong assumptions
on the form a model’s outputs should take—for example, producing
a signal using only an additive synthesiser—limits model flexibility,
but in return can improve the appropriateness of outputs. When
such a bias is appropriate to the task and data, this can be highly
beneficial. However, this bias also limits the broader applicability of
the model, and may cause issues with generalisation.

In reviewing the literature, we found that authors most
commonly referred to the following strengths of DDSP methods.

1. Audio quality: differentiable oscillators have helped reduce
artefacts caused by phase discontinuities (Engel et al., 2020a)
and pitch errors (Nercessian, 2023), and have enabled SOTA
results when incorporated into hybrid models (Choi H.-S. et al.,
2023; Song et al., 2023);

2. Data efficiency: an appropriately specified differentiable signal
processor seems to reduce the data burden, with good results
achievable using only minutes of audio (Engel et al., 2020a;
Michelashvili and Wolf, 2020);

3. Computational efficiency: offloading signal generation to
efficient synthesis algorithms carries the further benefit of
faster inference (Carney et al., 2021; Hayes et al., 2021; Shan
et al., 2022).

4. Interpretability: framing model outputs in terms of signal
processor parameters allows for post hoc interpretation.

16 Synthesizers and vocoders are in a sense narrowly specified audio codecs
(Hayes et al., 2021).
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Differentiable articulatory models can provide insights into vocal
production (Südholt et al., 2023), while common audio
synthesiser designs can be used to enable interpretable
decomposition of target sounds (Caspe et al., 2022; Masuda
and Saito, 2023);

5. Control/creative affordances: explicit controls based on
perceptual attributes such as pitch and loudness have enabled
creative applications such as real-time timbre transfer (Carney
et al., 2021), expressive musical performance rendering (Wu
et al., 2022c), and voice designing (Choi H.-S. et al., 2023).

Furthermore, differentiable audio synthesis has enabled new
techniques in tasks beyond the realm of speech and music synthesis.
For example, Schulze-Forster et al. (2023) applied differentiable
source-filter models to perform unsupervised source separation,
while Engel et al. (2020b) used an analysis-by-synthesis
framework to predict pitch without explicit supervision from
ground truth labels. Further, DDSP-based synthesisers and audio
effects have been used for tasks such as data amplification (Wu et al.,
2022b) and data augmentation (Guo Z. et al., 2022).

However, the majority of these benefits have been realised within
the context of synthesising monophonic audio with a predominantly
harmonic spectral structure, where it is possible to explicitly provide
a fundamental frequency annotation. This includes solo
monophonic instruments, singing, and speech. This limitation is
necessitated by the choices of synthesis model that have made up the
majority of DDSP synthesis research—typically, these encode a
strong bias towards the generation of harmonic signals, while the
reliance on accurate f0 estimates renders polyphony significantly
more challenging. In this sense, the trade-off is a lack of
straightforward generalisation to other classes of
sound—producing drum sounds with a differentiable harmonic-
plus-noise synthesiser conditioned on loudness and f0 is unlikely to
produce useable results, for example,. This is not an inherently
negative characteristic of the methodology—excluding possibilities
from the solution space (e.g., non-harmonic sounds or phase
discontinuities) has been instrumental in realising the above
benefits such as data-efficient training and improved audio quality.

The application of DDSP to a broader range of sounds has
consequently been slow. Many synthesis techniques exist which are
capable of generating polyphonic, inharmonic, or transient-dense
audio, but to date there has been limited exploration of these in the
literature. This may, in part, be due to the difficulty inherent in
optimising their parameters by gradient descent, as noted by Turian
and Henry (2020) and Hayes et al. (2023). Work on differentiable
FM synthesis (Caspe et al., 2022; Ye et al., 2023), for example, may
eventually lead to the modelling of more varied sound sources due to
its ability to produce complex inharmonic spectra, but as noted by
Caspe et al. (2022), optimisation of carrier and modulator
frequencies is currently not possible due to loss surface ripple.

In summary, the inductive bias inherent to DDSP represents a
trade-off. It has enabled in certain tasks, through constraint of
solution spaces, improved audio quality, data efficiency,
computational efficiency, interpretability, and control affordances.
In exchange, these strong assumptions narrowly constrain these
models to their respective domains of application, and limit their
generalisation to many real world scenarios where perfect
harmonicity or isolation of monophic sources cannot be

guaranteed. Hence, we argue that a deeper understanding of the
trade-offs induced by specific differentiable synthesisers would be a
valuable future research direction for the audio
synthesis community.

6.2 DDSP in practice

Producing a differentiable implementation of a signal processor
or model is now relatively straightforward due to the wide
availability of automatic differentiation frameworks.17 Such
libraries expose APIs containing mathematical functions and
numerical algorithms with corresponding CUDA kernels and
explicit gradient implementations. This allows DSP algorithms to
be expressed directly using these primitives, and the resulting
composition of their gradients to be calculated by
backpropagation. Additionally, with the growing interest in audio
machine learning research and DDSP, several specialized packages
have been created.18

Despite the simplicity of implementation, however, certain
techniques may not allow for straightforward optimisation
without workarounds or specialised algorithms. These include
ADSR envelopes (Masuda and Saito, 2023), quantisation
(Subramani et al., 2022), IIR filters (Kuznetsov et al., 2020;
Nercessian et al., 2021), and sinusoidal models (Hayes et al., 2023).

Further, the process of implementing a differentiable digital
signal processor can itself be time consuming, introducing an
additional burden to the research pipeline. Furthermore, the
programming language of a particular library–most commonly
Python–may not be the same language used in an end
application. However, recent efforts have sought to support the
translation of DSP code into differentiable implementations19 and
support the deployment of audio code written in machine learning
libraries into audio plugins20. Future efforts could explore how fast
inference libraries focused on real-time audio applications could be
integrated with DDSP audio synthesis (Chowdhury, 2021).

6.2.1 Alternatives to automatic differentiation
In certain situations, manual implementation of DSP algorithms

in automatic differentiation software is not possible (e.g., when using
a black-box like a VST audio plugin or physical hardware audio
processor) or is undesirable given the additional challenge and
engineering overhead. Three alternative methods to manually

17 PyTorch https://pytorch.org/and TensorFlow https://www.tensorflow.
org/are two examples that are well supported and that have been
used extensively in previous DDSP work. URLs accessed 27 August 2023.

18 These include the original DDSP library https://github.com/magenta/
ddsp introduced by (Engel et al., 2020a), a PyTorch port of the DDSP
library https://github.com/acids-ircam/ddsp_pytorch, TorchAudio
https://pytorch.org/audio/stable/index.html, and torchsynth https://
github.com/torchsynth/torchsynth introduced by (Turian et al., 2021),
accessed 27 August 2023.

19 (Braun, 2021) recently introduced the ability to transpile DSP code written
in Fausthttps://faust.grame.fr/to Jax code (Bradbury et al., 2018) into the
DawDreamer library. Released on GitHub, v0.6.14 https://github.com/
DBraun/DawDreamer/releases/tag/v0.6.14. URLs accessed 27th
August 2023.

20 https://neutone.space/accessed 27 August 2023.
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implementing DSP operations differentiably have been explored in
previous audio research, although have not been extensively applied
to synthesis at the time of writing.

Neural proxies seek to train a deep learning network to mimic
the behaviour of an audio processor, including the effect of
parameter changes. Hybrid neural proxies use a neural proxy
only during training, replacing the audio processing component
of the proxy with the original DSP during inference. Steinmetz et al.
(2022a) first applied hybrid neural proxies to audio effect modelling,
further distinguishing between half hybrid approaches which use a
neural proxy for both forward and backward optimization passes
and full hybrid approaches that only use a proxy for the backward
pass. Numerical gradient approximation methods, on the other
hand, do not require any component of the audio processing
chain to be explicitly differentiable and instead estimate black-
box gradients using a numerical method such as simultaneous
permutation stochastic approximation (SPSA) (Spall, 1998;
Martinez Ramirez et al., 2021) successfully applied this to
approximate the gradients of audio effect plugins.

6.3 Looking ahead

We wish, finally, to discuss the opportunities, risks, and open
challenges in future research into DDSP for audio synthesis.

6.3.1 Hybrid approaches
In this review, we undertook a cross-domain survey of DDSP-

based audio synthesis encompassing both speech and music. In
doing so, we note that the progression of DDSP methods in speech
synthesis commenced with mixed approaches, integrating DSP
components to neural audio synthesisers and benefiting from the
strengths of both. Early examples included the incorporation of LPC
synthesis filters (Juvela et al., 2019; Valin and Skoglund, 2019),
effectively “offloading” part of the synthesis task. Conversely, the
dominant applications of DDSP to music tend to offload all signal
generation to differentiable DSP components. We note that there
may be opportunities for both fields to benefit from one another’s
findings here, exploring further intermediate hybrid approaches.

Hybrid methods, in general, combine the aforementioned
strengths of DDSP with more general deep learning models. This
is visible in the use of pre- and post-nets in speech and singing
synthesis, for example, (Nercessian, 2021; Choi H.-S. et al., 2023;
Nercessian, 2023); in the integration of a differentiable filtered noise
synthesiser to RAVE (Caillon and Esling, 2021); or in the results of
the recent SVC challenge, in which the top two results used a pre-
trained DDSP synthesiser to condition a GAN (Huang et al., 2023).
We thus expect hybrid methods to be a fruitful future research
direction, where DSP domain knowledge can help guide and
constrain more general neural audio synthesisers, and neural
networks can help generalise narrow DDSP solutions.

6.3.2 Implementations, efficiency, and stability
A major challenge in DDSP research is ensuring that it is

computationally and numerically feasible to even perform
optimisation. While many DSP operations are deeply connected
to neural network components, the transition into gradient descent
over DDSP models is not inherently straightforward. IIR filters

operating on audio, for instance, are likely to be applied over many
more time steps than a conventional RNN, leading to specific
challenges such as the memory cost of unrolled operations, and
filter stability. As a result, efficient training algorithms have received
considerable attention. Further, recent work by Yu and Fazekas
(2023) presented an efficient GPU implementation of all-pole IIR
filters, evaluated exactly and recursively, with efficient
backpropagation based on a simplified algorithm for evaluating
the gradient. Similarly, accompanying their original contribution,
Engel et al. (2020a) included an “angular cumsum” CUDA kernel,
enabling phase accumulation without numerical issues. The
development of open-source and efficient implementations of
differentiable signal processing operations or their constituent
parts is of clear benefit to future work, and thus we argue that
this is a valuable area in which to direct future work.

6.3.3 Evaluation and comparison of approaches
As we note in Section 5, there does not exist a unified framework

for evaluating DDSP-based audio synthesisers, or in fact for
synthesisers in general. This renders comparison between
methods challenging, requiring frequent re-training and re-
implementation of baselines under new conditions.

However, it is not clear whether such a unified evaluation is
possible, or even desirable. As a broad family of methods, DDSP has
found a diverse range of applications, and many of these involve
highly specialised implementations. For example, an acoustically
informed model of piano detuning (Renault et al., 2022) was paired
with a differentiable synthesiser. Evaluating the success of such an
approach would arguably require a specialised experimental design.

Nonetheless, the consistency with which listening tests, and in
particular MOS tests, are performed with speech synthesisers does
allow for a reader to make coarse judgements about the relative
quality of the tested methods, even if these do not generalise beyond
the particular study. With this in mind, we pose the question: would
applications of DDSP to music benefit from wider use of a
standardised listening test format?

Subjective listening tests are time consuming and are not
always a viable option. This is particularly true when a large
number of models or stimuli require comparison. For this
reason, quantitative metrics which correlate well with
perception are potentially of great use to researchers. We note
that while PESQ (International Telecommunication Union, 2001)
has seen some limited use in DDSP-based speech research, and
FAD (Kilgour et al., 2019) has been used in a handful of works,
there does not appear to be a commonly agreed upon quantitate
proxy for perceptual evaluation. This is likely due in part to the
difficulty of designing such a tool, although we note promising
progress in this direction using reference-free speech metrics
(Manocha et al., 2022) and improving FAD for generative
music evaluation (Gui et al., 2023).

Domain and task-specific challenges also represent a valuable
approach to evaluation. The speech and singing voice communities
have already made particularly constructive use of this approach.
The voice conversion challenge (Wester et al., 2016) and singing
voice conversion challenge Huang et al. (2023) are clear examples of
the benefits of such task-specific evaluations, and have, in fact,
already started to highlight the value of DDSP, while not being
specifically focused on DDSP methods. Open-challenges that target
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specific applications of DDSP will be a valuable way to both
encourage further research in this area and support a deeper
understanding of the strengths of various DDSP techniques.

6.3.4 Open questions
Through our review we noted a small number of recurring

themes relating to specific challenges in working with DDSP, often
mentioned as a corollary to the main results, or to motivate an
apparent workaround. We also observed that certain methods have
received attention in one application domain but not yet been
applied to another, or have simply received only a small amount
of attention. In this section, we briefly compile these observations in
the hopes that they might help direct future research. These open
questions include.

1. The difficulty estimating oscillator frequencies by gradient
descent, discussed in detail by Turian and Henry (2020) and
Hayes et al. (2023) (see Section 3.2.2)
• A related issue is the tuning of modulator frequencies in FM
synthesis (Caspe et al., 2022) (see Section 3.4.2)

2. The invariance of some signal processors under permutations of
their parameters appears to be relevant to optimisation, as noted
by Nercessian (2020), Engel et al. (2020b), and Masuda and Saito
(2023), but there has been no specific investigation as to how this
impacts training.

3. Estimating global parameters like ADSR segment times appears
to be challenging, especially when these lead to complex
interactions (Masuda and Saito, 2023). This is important for
modelling commercial synthesisers differentiably.

4. Estimating delay parameters and compensating for delays poses
specific challenges, which will most likely require specialised loss
functions. (Martinez Ramirez et al., 2021; Masuda and
Saito, 2023).

5. Neural proxy (Steinmetz et al., 2022a) and gradient
approximation (Martinez Ramirez et al., 2021) techniques
have been applied in automatic mixing and intelligent audio
production, but not yet explored for audio synthesis. Could these
allow black-box software instruments to be used pseudo-
differentiably?

6. Directed acyclic audio signal processing graphs have been
estimated blindly (Lee et al., 2023), while FM routing has
been optimised through neural architecture search (Ye et al.,
2023). Can these methods be generalised to allow estimation of
arbitrary synthesiser topologies?

7 Conclusion

In this article, we have surveyed the literature on differentiable
digital signal processing (DDSP) across the domains of speech,
music, and singing voice synthesis. We provided a detailed
overview of the major tasks and application areas where DDSP
has been used, and in this process identified a handful of recurring
motivations for its adoption. In particular, it became clear that
DDSP is most frequently deployed where it confers a benefit in audio
quality, data efficiency, computational efficiency, interpretability,
or control.

However, simply implementing a known signal processor
differentiably is frequently insufficient to realise these benefits.
Through our review of the major technical contributions to the
field, we observed that there remain several open problems, such as
frequency estimation by gradient descent, which may hinder the
general applicability of DDSP methods. Further, we identify that
selecting a training objective and designing an appropriate
evaluation is non-trivial, with many different approaches
appearing in the literature. In this sense, we would argue that the
fields of music and speech synthesis may benefit from a sharing of
expertise—in particular, the prevalence of standardised listening
tests in speech may help those working on music-related synthesis
tasks better assess their progress.

In our discussion, we noted that the purported advantages of
DDSP techniques are typically gained at the expense of broad
applicability and generalisation. Finally, we identified promising
avenues for future research, such as the development of hybrid
models, which incorporate DDSP components into more general
models, and concluded our review by highlighting several
knowledge gaps that warrant attention in future work.
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