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Abstract—Convolutional Neural Networks have been exten-
sively explored in the task of automatic music tagging. The
problem can be approached by using either engineered time-
frequency features or raw audio as input. The use of raw audio
enables a network to learn time-frequency features directly from
the waveform in an end-to-end manner. Meanwhile, modulation
filter bank representations have been actively researched as a
basis for timbre perception. We explore an end-to-end learned
front-end for audio representation learning, that incorporates
a temporal modulation processing block. The structure is ef-
fectively analogous to a modulation filter bank, where the FIR
filter center frequencies are learned in a data-driven manner. The
expectation is that a perceptually motivated filter bank can pro-
vide a useful representation for identifying music features. Our
experimental results provide a fully visualisable and interpretable
front-end temporal modulation decomposition of raw audio. We
evaluate the performance of our model against the state-of-the-art
of music tagging on the MagnaTagATune dataset. We analyse the
impact on performance for particular tags when time-frequency
bands are subsampled by the modulation filters at a progressively
reduced rate. Without using extensive musical domain knowledge
in the design of this front-end, we demonstrate that modulation
filtering provides promising results for music tagging and feature
representation.

I. INTRODUCTION

Deep learning techniques have emerged as a dominant force
in modelling music and audio for retrieval and synthesis
purposes, with a departure from feature engineering [1]. Mel
spectrograms remain a popular feature representation in music
information retrieval (MIR) among several tasks [2], [3] due
to the robustness and compactness of the representation that
enables a reduced data size and computational overhead.
In MIR, music is viewed as a hierarchical composition of
features and concepts at multiple levels of abstraction [1]. The
feature extraction approach, that is common in MIR, typically
consists of a cascade of fixed operations consisting of an affine
transform, pooling and nonlinearities. This is analogous to the
topology of a Convolutional Neural Network (CNN), where
the operations’ parameters are learnable.

Mel filter banks, however, use a fixed basis. End-to-end
Deep Neural Networks (DNNs) provide capacity to learn
feature extractors that are highly optimised for the task at hand.
End-to-end learned filter banks can be designed via DNNs,
through the use of inductive biases towards the type of signal
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being modelled, for example, a layer of 1-D convolution FIR
filters. End-to-end filter bank learning has been an active field
of research in automatic speech recognition (ASR) [4]–[8] and
speech separation [9]. This has demonstrated that randomly
initialized 1-D convolutional kernels can learn a filter bank
representation that performs a time-frequency (TF) analysis,
under various parameterisations. Auditory domain knowledge
can give insight into how to design an end-to-end learned
filter bank, such that they align with representations known to
pertain to human auditory perception. For example, the human
auditory system is known to process the temporal envelope of
critical bands via a modulation filter bank [10].

In music tagging, Dieleman et al. [11] first demonstrated
that end-to-end automatic music taggers learn a time-frequency
decomposition at the initial layers. Towards the state-of-the-
art, Musicnn [12] applies musical domain knowledge in the
design of its 2-D convolution kernel shapes, i.e. the various
spectral profiles and temporal dependencies that arise from
timbre and musical rhythmic structure. SampleCNN departs
from the frame-based approach that is common when pro-
cessing raw audio and STFT features, through the use of very
small convolutional filters applied directly to raw waveform
[13]. This assumes that fine-grained local features can be
hierarchically combined into a rich, structured representation.
More recently, the HarmonicCNN demonstrated the utility of
exploiting harmonic relationships in the front-end of a CNN
music tagger [14]. HarmonicCNN utilises the auditory and
musical domain knowledge that stipulates harmonic structure
as key to human perception of pitch and tonality, and is
inherent to western music that is based on an equal-tempered
scale. Of the aforementioned models, a simple CNN with
mel input features was shown to perform best in auto-tagging
on the MagnaTagATune dataset in [15], yet less robust to
generalization on perturbed inputs than the HarmonicCNN
model. None of these models consider perceptually motivated
representations for timbre that arise in auditory experiments.

A range of TF decomposition front-ends have been learned
for raw waveform modelling. This has been achieved through
1-D convolution and features of well-known auditory and
signal processing filters, including Gamma-tone filters [4],
sinc band-pass filters (SincNet) [6] and Gabor filters [8]. In
ASR, multiscale feature learning has been explored by using
variable-length TF kernels, where the kernel size biases the
network to focus on appropriate frequency ranges [16]. A mul-



tiresolution DNN front-end for ASR has been implemented us-
ing a 1D temporal convolution TF decomposition, followed by
an envelope extractor in place of the max-pooling operation,
enabling varying resolution subsampling of learned critical
band outputs [17]. Most recently, an audio feature extraction
front-end, LEAF [8], that adopts learnable gabor filters, low-
pass pooling and compression, marginally outperformed time-
domain filter banks, SincNet and mel features on several audio
classification tasks. The tasks included speaker identification,
audio event detection and musical instrument recognition,
however, automatic music tagging was not explored.

Few end-to-end music tagging models make extensive use of
perceptual domain knowledge in architecture design. Simula-
tion of cochlear and cortical processing consists of a two-stage
process involving a constant-Q filter bank followed by spectro-
temporal modulation filtering [18]. In the domain of auditory
cognition, modulation representations are actively researched
for effectiveness as a vehicle for sound source identification
and timbre perception [19]–[21]. Dau’s auditory excitation
model consists of a cochlea gamma-tone ERB-scale filter
bank, followed by half-wave rectification, low-pass processing
of critical band outputs, and a modulation filter bank that
performs analysis across filter band outputs [22]. The model
assumes that the temporal envelope within each critical band
is processed by a bank of modulation filters [10].

In this work, we investigate end-to-end learned front-
end audio representations, that are inspired by models of
auditory modulation processing. The main contribution is a
convolutional temporal modulation extractor, that acts as a
time-averaging operation. This layer enables a multiresolution
temporal processing of filter band outputs. We evaluate the
architecture on the task of automatic music tagging on the
MagnaTagATune dataset. This is inherently related to the task
of timbre analysis [23], a musical feature that gives rise to
the semantic percepts of instrumentation and genre. Through
analysis and visualisation of the learned weights we show that
such an architecture can provide useful signal analysis and
learning capacity. We compare the use of different network
parameters and types of filter used for temporal modulation
processing, perform a tag-based analysis of the network and
contrast its performance against the state-of-the-art in music
tagging on the MagnaTagATune dataset.

II. SYSTEM OVERVIEW

A. Modulation Front-end

1) Learnable Time-Frequency Decomposition: Commonly,
the first layer of time-domain CNNs represents a set of finite
impulse response (FIR) filters that perform a TF analysis. An
inherent issue with learning filter banks through randomly
initialised 1-D convolution is the non-optimality of the learned
basis and the lack of constraints on the center frequencies
during training. SincNet [6] facilitates learning filter banks by
fixing the front-end TF analysis as a set of sinc band-pass
filters, where the learnable parameters are the filters’ cut-off
frequencies. In place of 1-D convolutional kernels, we use
a sinc band-pass time-frequency decomposition, with center

frequencies initialized on the mel-scale. This choice is due
to (a) constrained parameterization, (b) reduced number of
parameters and (c) ease of interpretation of the learned set of
filter parameters. In practice we found the sinc filter bank to be
more effective for both convergence stability and performance.

Equation (1) shows the convolution operation between the
waveform (x) and sinc filter gk, k ∈ [1...K]. Each filter’s
learnable parameters, θk, consist of a low (f1) and high (f2)
cut-off frequency. Equation (2) is the formulation of each
band-pass filter in the time-domain. This forms the basis for
time-frequency decomposition in the front-end of the network.
In our experiments, each kernel has a length of 256 samples
(16 ms) with a convolution stride of 10 samples (0.625ms) at
sampling rates of 16000 Hz. This can be followed by the ReLU
or squared-modulus nonlinearity for half-wave rectification.

yk[n] = x[n] ∗ gk[n, θk] (1)

gk[n, f1,k, f2,k] = 2f2,ksinc(2πf2,kn)−
2f1,ksinc(2πf1,kn)

(2)

2) Temporal Modulation Processing: In ASR, it is common
to use a time-averaging layer, such as maximum pooling [6]
or low-pass pooling [7], [8], across the filter bands of a filter
bank output. In the layer that follows the TF analysis, we
define a TF band time-averaging operation via a learnable
set of FIR filters that are shared across incoming frequency
channels. This formulation can enable learning of envelopes
across the temporal dimension of the TF representation, at
varying resolutions. This can be viewed as a modulation filter
bank if appropriate band-pass filter shapes can be learned. We
use up to 20 of these envelope extractors.

We explore two types of envelope extraction: (a) fully
learnable 1-D convolution FIR filters (ModNet), and (b) a bank
of sinc band-pass filters (SincModNet). Both are applied to the
time-frequency representation, with the filters shared across
incoming frequency bands. In the case of learnable FIR filters,
we initialise each FIR filter in the set as a Hamming window
in one of 5 different positions across the filter, as in [17]. For
SincModNet, the band-pass filters are initialized on a linear
scale. The convolution is strided by 160 samples (10ms) on
the input that was downsampled to 1600 Hz by the TF analysis
filter bank. Equation (3) expresses the operation of this layer,
where sm,k is the output from modulation filter hm being
applied across filter band k. This yields a 3-D representation
from the M modulation filters, that applied across time and
shared in frequency for each of the K band-pass outputs.

sm,k[n
′] = yk[n

′] ∗ hm[n′, θm] (3)

An issue with the unconstrained optimisation of FIR filter
weights, is that they must learn both frequency bands to filter
and a magnitude scaling factor, as was recognised in [8].
This was problematic during training, since some filters were
able to learn meaningful filter shapes but displayed very low
amplitude scaling. To effectively solve this issue, we utilised



Fig. 1. The proposed architecture. 1-D Modulation filters are applied across frequency bands of the time-frequency (TF) representation. A 3-D representation,
where each channel represents a different modulation rate, is passed to a 2-D CNN classifier.

TABLE I
MODULATION FRONT-END LAYERS

Sinc convolution 1-80-256-10
nonlinearity |.|2 or ReLU

learnable FIR or sinc convolution 80-20-128-160
nonlinearity |.|2 or ReLU

normalization instance or weight normalization

instance normalization [24] that was shown to be effective
in ASR [7]. This applies mean-variance normalization per
envelope channel, per audio example. This was found to be
preferable to batch normalization for convergence and perfor-
mance. For ModNet, this enabled meaningful filter shapes to
be learned with more useful magnitude scaling factors. An
alternative solution is L2 weight normalization, as was used
in [8].

B. Back-end

Deep networks for audio representation can be viewed from
the perspective of a front-end feature extractor and a back-end
classifier. The 3-D front-end representation is subsequently
analysed by a 2-D CNN that is kept constant. Each of
the modulation filter outputs is treated as an input channel
into the 2-D CNN. The back-end is a ResNet architecture
similar to that of HarmonicCNN [14], consisting of seven 2D
convolutional layers. Each layer consisted of 256 channels,
batch normalization [25] and the ReLU nonlinearity. The final
layer is a densely connected layer, with the sigmoid activation
function for performing the task of multi-label music tagging.

C. Implementation Details

All models were trained for 200 epochs. The best model is
was according to an early stopping regularizer with a patience
of 15 epochs. A learning rate of 10−3 was used with a batch
size of 4. Adam optimisation [26] was used with a learning
rate scheduler that halves the learning rate after observing no
decrease in the validation loss within 5 epochs. The audio
sampling rate was fixed to 16 kHz and the audio input size
5 to seconds. All models were trained on RTX 2080 GPUs
and took approximately 1 day to train. The code for these
experiments has been made available on Github1.

1https://github.com/rastegah/modnet.git

III. DATASETS AND TASKS

We focus on automatic music tagging - the task of multi-
label classification - where the presence of multiple semantics
tags are predicted for a clip of music. We experimented with a
subset of the widely utilised MagnaTagATune (MTAT) dataset
[27] of 26k audio clips. Each audio clip is around 30 seconds
long. Only the top 50 occurring tags are used, resulting in
around 21k audio samples for our experiments. We follow
the split of the 16 folds that has been used in many previous
studies [15], where the first 12 folds are used for training, the
13th for validation and the remainder for testing. Many music
tags, that are based on mood, instrumentation and genre, are
highly related to the timbral characteristics of the audio.

IV. EXPERIMENTAL RESULTS

In this section we present our experimental results for this
architecture. Section IV-A compares various parameter con-
figurations of this model. Section IV-B compares performance
across tags and interprets the effects of varying the modulation
filter bank stride on tag-based performance . Sections IV-C
and IV-D look more closely at the learned filters and their
visualisation in the cases of both ModNet and SincModNet.
Finally, in Section IV-E, we compare the performance of our
model against state-of-the-art music taggers MTAT dataset.

A. Parameter Study

We compare our temporal modulation analysis operation
against a maximum pooling baseline to assess whether this
signal processing step and representation is valuable to the
CNN classifier. Table II compares the performance of these
two models. We report results for a SincModNet model using a
small number of FIR envelopes, i.e. 5, in order to demonstrate
the utility of this time-averaging operation. For a small number
of modulation filters, the operation is more effective. Between
0 and 800 Hz, two of the five modulation frequencies are
learned below 20 Hz, another between 30-40 Hz, and the
remaining two at around 175 and 325 Hz.

Table III shows results for varying numbers of SincMod-
Net modulation filters. We observe significant improvements
across runs when 20 channels are used, indicating that the
network prefers more granular subsampling rates of frequency



Fig. 2. Tagwise performance grouped by category for the best performing SincModNet model using 20 modulation filters of length 128. ROC-AUC is reported
per tag.

TABLE II
MAX POOLING VS LEARNABLE DEPTHWISE SINC BAND-PASS FILTERS

Kernel Size Stride Model ROC-AUC PR-AUC

128 128 Max Pooling 0.8599 0.3484
5 Mod Filters 0.8790 0.3717

TABLE III
SINCMODNET ACCURACY COMPARISON OF NUMBER OF MODULATION

FILTERS

Kernel Size # Modulation Filters ROC-AUC PR-AUC

128

5 0.8790 0.3717
10 0.8779 0.3684
15 0.8696 0.3551
20 0.8939 0.4039

bands. It should be noted that there is a slight drop in perfor-
mance when moving from 5 to 15 filters. Upon inspection of
the frequency response of the learned filters for the reported
models, we observe that in the case of 15 filters, none of the
center frequencies are below 20 Hz, while the 5 filter case
does result in filters below 20 Hz. Rectifying this issue would
require further stabilisation of training. The slower, sub audio-
rate energy fluctuations are of particular interest in music
processing e.g. tremolo and slower rhythmic structures that
arise from articulation and musical structure [28]. This also
suggests the importance of initialization in the distribution
of the resulting modulation filter frequencies. The frequency
response of the 20 learned modulation filters are shown in
Fig. 3, showing that the resulting center frequencies span the
important modulation range.

Fig. 3. Frequency response of the 20 learned modulation filters for a
SincModNet model.

In Table IV, we compare the performance of different
combinations of nonlinearities used in the front-end. We utilise
a combination of ReLU and squared-modulus nonlinearities.
The use of the absolute-squared nonlinearity brings the front-
end representation closer to a power spectrum computed
for various modulation rates. In practice, we find that a
combination of ReLU and squared-modulus provides superior
performance for this architecture. This aligns with the com-
putation of a temporal modulation spectrum, where half-wave
rectification can be used for filter-band envelope smoothing
and the representation is transformed into power or energy
magnitudes after modulation filtering [21].

B. Tag-based performance

Fig. 2 displays the tag-wise ROC-AUC scores, grouped per
tag category, in order to gain insight into whether there are
significant differences between tags and tag categories. On
comparison with the tag-based performance plots for Harmon-
icCNN and SampleCNN, we find that the performance trend
among classes was clearly similar. This suggests that tag-based
performance for this architecture is related to the notion of
tagability and class imbalances within music tagging data [29].
Since temporal modulation is known to characterise timbre
features, varying the modulation filter parameters can give
insight into how the filter bank affects performance on tags
that are strongly related to timbre. Hence, to assess the impact
of the modulation filters, we investigate tag-based performance
under modulation rates at various levels of temporal coarseness
by varying the stride of the modulation filters.

Fig. 4 compares the effects on performance from varying the
stride of the modulation filter bank. This intends to generate
insight into the time-scales that modulations operate on for

TABLE IV
PERFORMANCE COMPARISON NONLINEARITY COMBINATIONS AFTER THE

TF ANALYSIS (r1) AND MODULATION FILTERING (r2) LAYERS.

r1 r2 ROC-AUC
ReLU |.|2 0.8911
ReLU ReLU 0.8730

- ReLU 0.8



Fig. 4. Comparison of the performance on selected tags for different
convolutional stride (in samples) of the modulation filtering layer.

particular tags. The tag examples that are shown are those
that were either mostly unaffected by reducing the modulation
sampling rate, and those that showed a significant impact from
increased stride. First, we draw attention to the contrasting
impact of stride on the tags: loud and quiet. Analysing modu-
lations at a finer resolution appears to be of significance in the
case of quiet examples. This alludes to a theory that transients
are coded over coarser time-scales. In [30], analysis of the
salience of temporal modulations for dynamics classification
supports the notion that temporal modulations for certain loud
sounds are coded over coarser scales. This may also explain
why tags such as rock, metal and drums are largely unaffected
by increasing stride, since they are more characterised by the
presence of loud transients at regular rhythmic intervals. From
an auditory perspective of music, a sense of regular pulse
is accounted for at rates of modulation below 8 Hz [28].
We observe this in the visualisation, where for low temporal
modulation rates, transients in the lower end of the spectrum
show high energy. However, quiet sounds generally have a
sparser presence in the spectrum and finer-scale loudness
modulations. Further disparities can be observed with tags
such as singing, that are unaffected by increasing strides, and
tags that account for the presence of vocals such as male
voice. Instances of the tag choral tend to contain unison
and longer sustained vocals. In contrast, male voice contains
more fine temporal structure and dynamics variation. Finally,
instances of sitar and indian contain more irregular rhythmic
content, sparser events and micro-structure; these tags are
clearly related and are both affected by the coarser analysis of
modulation content.

C. Learned Modulation Filters

Formulating the time-averaging layer as FIR filters makes
interpretation possible. Fig. 8 shows the magnitude spectra for
each of 20 filters learned with a ModNet architecture, where
the filters are derived from randomly initialized 1-D convolu-
tion kernels. The layer has learned various filter shapes that
sample the TF bands at varying rates, predominantly within
the range of 0 - 200 Hz. The filters tend to have close to low-
pass or band-pass characteristics when the weights are learned

Fig. 5. Magnitude (dB) spectrograms for (top-left) groundtruth (mel) (top-
right) filter bank spectrogram (bottom-left) modulation spectrogram for the
1st modulation filter (bottom-right) modulation spectrogram for modulation
filter 19. Each are from an example predominantly labelled rock.

Fig. 6. Magnitude (dB) spectrograms for (top-left) groundtruth (mel) (top-
right) filter bank spectrogram (bottom-left) modulation spectrogram for the
1st modulation filter (bottom-right) modulation spectrogram for modulation
filter 19. Each are from an example predominantly labelled quiet.

in a purely data-driven way, as was previously demonstrated
with a similar architecture for ASR [17]. Exemplary of the
learned low-pass filters, often the resulting impulse responses
were clearly triangular shaped, but this result was subject to
variation across training runs. These results incentivized the
use of a constrained set of sinc band-pass modulation filters
in SincModNet.

D. Visualisation of Learned Representation

Inspection of the learned representation for various tags
can enable the identification of the types of amplitude mod-
ulations that the network prefers to prioritise, and in which
frequency bands such temporal patterns lie. We can observe
that modulations respond at different time-scales, in varying
frequency bands between tags. Fig. 5 and 6 show localization
of modulation content across frequency bands for the lowest
and highest modulation rates. Fig. 7 illustrates the representa-
tion that results applying the stack of modulation filters to a



Fig. 7. Visualisation matrix of the representation when modulation filters are applied to an instance of the choral tag. Plotted in ascending order of modulation
frequency from left to right. This gives an indication that modulation rates appear in differing frequency bands for the various tags.

Fig. 8. Learned magnitude spectra of the 20 envelope extractors of a ModNet
architecture (1-D convolution FIR filters of length 80), presented in a manually
selected order. Although diverse filter shapes can be learned e.g. low-pass and
band-pass.

time-frequency input. Higher modulation rates generally show
a sparser presence in the representation, since these occur
over finer time scales. In the lowest, rhythmically perceived
modulation ranges, i.e. below 8 Hz, percepts of meter and
tremolo amplitude modulation can be detected.

E. Comparison with state-of-the-art

We evaluate against the state-of-the-art models in music
tagging on MTAT. Table V shows area under the ROC curve
(ROC-AUC) and the precision-recall curve (PR-AUC), as
metrics for the predictive performance on the binary decision
problem. These metrics are computed across individual tags
and averaged. Our reported models are ModNet (sinc band-
pass filter bank and learnable FIR filter temporal envelope
extraction) and SincModNet (sinc band-pass filter bank and
sinc band-pass temporal envelope extraction). Both use 80 TF

TABLE V
COMPARISON WITH SOTA

Music Tagging (MTAT)
Model ROC-AUC PR-AUC

Dieleman et al. [11] 84.87 -
Musicnn [12] 0.9106 0.4493

SampleCNN [13] 0.9058 0.4422
HarmonicCNN [31] 0.9127 0.4611

ModNet 0.8874 0.3979
SincModNet 0.8939 0.4039

filters of stride 0.625ms and 20 modulation filters of stride
10ms. ReLU (r1) and abs-squared nonlinearities (r2) are used
for each layer respectively. We discussed the compared models
in Section I. The results reported for the models are from [15],
where further details of their implementation can be found.
HarmonicCNN results are reported for the model that operates
on raw waveform in [31].

Our model performs marginally worse on ROC-AUC than
HarmonicCNN and Musiccnn, although Musicnn operates on
mel-spectrogram inputs. Compared to these models, our model
does not employ musical domain knowledge, i.e. the use of
harmonic filter stacks and musically motivated filter shapes.
For this reason, the results are aligned with our expectations.
Furthermore, our representation is open to further interpreta-
tion and engineering effort that could account better for the
modulation content of the class of signals being modelled.
Future work could adopt an approach that uses a fusion of
musical domain knowledge, e.g harmonic filters combined
with modulation processing. This would allow us to better
discern the benefit of modulation processing in the front-end.
In our model, aspects of music that are relevant to timbre are
more emphasised, but these may be insufficient to boost the
performance across all tag categories.

V. CONCLUSIONS AND FUTURE WORK

In this work, we introduced a time-frequency time-averaging
operation for end-to-end audio representation learning. We
interpret this layer as a modulation filter bank that captures
temporal amplitude modulations at various rates, through the
use of learnable FIR filters. This is a first step in music tagging
to explore the use of modulation representations in a fully
end-to-end learned context. We visualised the representation,
which shows the varying presence of the modulation rates
across tags. Analysis of changing the stride of the modulation
filters showed a varying impact on performance, suggesting
that the time-scale of modulations and subsampling rate is of
relevance for identifying particular tags, while coarse analysis
of modulation content is permissible for several tags.

The modulation filter center frequencies are learned in a
data-driven manner. However, the current models do not di-
rectly replicate the time-frequency resolution of psychoacous-
tic models, i.e. bandwidth and modulation frequency settings.
Additional signal processing steps can be introduced, such as
a channel-wise low-pass smoothing step that mimics cortical
processing. Domain knowledge of amplitude modulation rates,



for the class of signals being modelled, could be incorporated
to further tune the settings of the learnable modulation filters.
Further architectural design could incorporate analysis of
energy fluctuations at multiple time-scales.

Learnable modulation filters applied directly to STFT inputs
are yet to be explored. Future work will evaluate the architec-
ture on additional music tagging datasets and test its capability
of generalization to deformed inputs. This model could be
applied to other tasks such as acoustic scene analysis and
instrument identification tasks. It is of interest to explore the
use of such front-ends in a similarity metric for downstream
generative tasks such as audio denoising. Overall, the use of
modulation processing in a feature extraction front-end can
provide competitive performance on tagging of the MTAT
dataset, without using extensive musical domain knowledge
in the architecture’s design.
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