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ABSTRACT

Physical models of rigid bodies are used for sound synthesis
in applications from virtual environments to music produc-
tion. Traditional methods, such as modal synthesis, often rely
on computationally expensive numerical solvers, while recent
deep learning approaches are limited by post-processing of
their results. In this work, we present a novel end-to-end
framework for training a deep neural network to generate
modal resonators for a given 2D shape and material using a
bank of differentiable IIR filters. We demonstrate our method
on a dataset of synthetic objects but train our model using
an audio-domain objective, paving the way for physically-
informed synthesisers to be learned directly from recordings
of real-world objects.

Index Terms— differentiable signal processing, machine
learning, sound synthesis, physical modelling

1. INTRODUCTION

The synthesis of contact sounds from rigid bodies and mate-
rials has been of continual interest in applications from music
production, through sound design, to the rendering of object
sounds in virtual environments [1, 2]. For this reason, the prob-
lem has been extensively studied, and physically-based numer-
ical methods are often selected for its solution. However, such
approaches typically incur a significant computational cost and
storage cost for cached solutions if real-time interaction is re-
quired. These limitations inhibit flexibility in such applica-
tions, where adapting to new object shapes and materials re-
quires prohibitively time-consuming computation of the new
solution.

Of these numerical approaches, which ultimately rely on
solving the wave equation, the finite difference time domain
and the finite element method (FEM) are most commonly used
due to their adaptability. FEM solvers are used to precompute
the vibrational modes of arbitrarily shaped rigid objects, allow-
ing contact sounds for these objects to be synthesized using
modal synthesis.

The computation of the modes is usually posed as a gen-
eralized eigenvalue problem using the mass and stiffness ma-
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trices of an object. Using the solution, sound can be ren-
dered with an oscillator bank by projecting an impulse onto
the modes at each discrete location within the object. This
approach to computing an object’s modes can, however, be
computationally expensive. Moreover, every time the shape
or material characteristics of the object change, the system
must be solved again. Thus, numerous approaches have been
proposed to accelerate this process [3, 4, 5].

1.1. Data-driven methods

A recent generative method, proposed by Traer et al. [6], used
a perceptually derived statistical model to approximate object
impulse responses by approximating the modes within some
degree of perceptual tolerance. While this method circumvents
the need for a numerical solver and uses filters to account for
different object interactions, it relies on abstract intermediate
representations of an object’s physical characteristics and does
not take into account object geometry.

Jin et al. [7, 8] trained a deep neural network to pro-
duce an object’s modes, circumventing the need for a FEM
solver. Their model predicted eigenvalues and eigenvectors
from sparsely voxelized objects, using as supervision the cor-
responding modes obtained from the solver. Additionally, in
order to generalize to different sizes and materials, the authors
suggest the adaptive scaling of the modes based on material
parameters (except for Poisson’s ratio) and the size of the
object. Similarly, our method uses a discretized shape repre-
sentation as input to a neural network. However, unlike Jin
et al.’s model, no post-processing is required to account for
different material parameters. Further, our model is not limited
to querying modes at discrete positions in the shape, allowing
for arbitrary co-ordinate input.

1.2. Differentiable resonators

While it is possible to synthesise modes using an oscillator
bank where each damped sinusoid corresponds to an impulsed
mode, resonant filter banks are commonly used for synthesis
due to their flexibility, as they can be excited with a variety
of signals [9]. Realising such a filter bank, however, requires
the corresponding eigenvalue and eigenvector problems to be
solved in order to derive the filter coefficients. In this work, we
propose an end-to-end learning method for generating resonant
filter banks without explicitly solving the system.

Our method relies on differentiable infinite impulse re-
sponse (IIR) filters, which allow a neural network to directlyIC
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Fig. 1. A schematic diagram of our model and its training pipeline. A CNN generates shape embeddings from a synthetic dataset of
2D convex shapes, which are concatenated with material parameters and excitation coordinates and passed to an MLP to generate
parameters for a differentiable IIR filterbank.

control filter coefficients by propagating loss gradients through
them. Whilst it is possible to directly specify such a filter in its
recurrent form [10, 11], this requires backpropagation of loss
gradients through time which can introduce instability in the
form of exploding or vanishing gradients and is poorly suited
to parallel computation on a GPU. For these reasons, other
recent approaches [12, 13] have used the frequency sampling
method during optimisation. This approach allows a finite
impulse response (FIR) approximation of an IIR filter’s fre-
quency response to be computed at arbitrary resolution whilst
retaining full differentiability.

In this work, we set out to address the shortcomings of ex-
isting neural network approaches using an end-to-end learn-
ing paradigm with differentiable signal processors. Our pro-
posed method can synthesise contact sounds from arbitrary 2D
shapes and material parameters without assuming any particu-
lar damping model in a fraction of the time required for a nu-
merical method. Our network is coupled with a differentiable
IIR filter bank which can be configured with varying arrange-
ments of cascaded and parallel biquads.

2. METHOD

Fig. 1 provides an overview of our method, illustrating how we
sample synthetic data, prepare inputs, and train our model.

2.1. Learnable modules

To allow efficient synthesis of contact sounds at multiple object
positions for a given shape, our system contains two separate
neural networks which are jointly optimised. The first is a
convolutional neural network (CNN), using the EfficientNet-
B0 architecture [14], which generates an embedding from

two-dimensional shapes. The network takes as input a 2D
occupancy grid describing the shape of an object in discretized
space and outputs an embedding of 1000 dimensions. For each
distinct shape, only a single forward pass through this module
is required.

The second learnable module is a multi-layer perceptron
(MLP) which takes as input the shape embedding concatenated
with material parameters and the co-ordinates of the vertex at
which the shape will be excited. The cached output of the
CNN can be reused to evaluate different excitation positions
and materials for the same shape, eschewing the need to re-
compute a shape embedding. The material parameters ϕ =
(ρ,E, ν, α, β) consist of mass density (ρ), Young’s modulus
(E), Poisson’s ratio (ν), and Rayleigh damping coefficients
(α, β). Both excitation co-ordinates x and material parame-
ters ϕ are normalized in the range [0, 1]. The MLP’s output is
used to parameterise a differentiable IIR filter bank.

2.2. Differentiable filter bank

Each biquad in our differentiable filter bank is parameterized
by a single pole pl,m and zero ql,m, where l and m correspond
to the filter’s index in the parallel and cascade dimensions, re-
spectively. We constrain the remaining pole and zero of each
filter to the complex conjugates of these parameters. Each bi-
quad also has a gain parameter kl,m applied to its numerator. In
order to encourage filters with strong resonant peaks, we spec-
ify a fixed bias for pole and zero parameters, initialising them
near the edge and centre, respectively, of the unit circle.

To ensure filter stability, we constrain the complex poles
to be within the unit circle following the method described in
[15]. Specifically, we apply an activation function h : C → C
defined as:
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h(p) =
tanh |p|

|p|
· p (1)

We do not apply such a constraint to the zeros as we are uncon-
cerned with preserving minimum phase. The transfer function
of each filter is thus given by:

Hl,m(z) =
1− 2Re(ql,m)z−1 + |ql,m|2 z−2

1− 2Re(h (pl,m))z−1 + |h (pl,m)|2 z−2
(2)

While training the model, we do not evaluate the filter’s
exact recursive implementation, and instead opt, as in recent
work on differentiable IIR modelling [12, 13], to approximate
the filter response by sampling it in the frequency domain. That
is, we evaluate the filter’s transfer function at discrete points
ej2π

k
N on the unit circle, where N is the signal length and

k ∈ {0, . . . , N/2 + 1}. Whilst this method incurs a loss in
precision, it allows the filter computation to be performed in
parallel on a GPU, whilst also sidestepping the aforementioned
issues with training stability and exploding gradients.

Our filter bank consists of a flexible number of parallel fil-
ters, each consisting of a cascade of some number of second
order (biquadratic) sections. The cascade depth M and num-
ber of parallel filters L are thus tunable hyperparameters of
our method, with the overall transfer function of the filter bank
given by:

H(z) =
L∑

l=1

M∏
m=1

kl,mHl,m(z) (3)

2.3. Loss

We train our model to minimize the following loss function:

L = λ ∥Xmel −Hmel∥22 + γ ∥logXmel − logHmel∥22 , (4)

where λ and γ are loss scaling hyperparameters, and Xmel
and Hmel are the mel-scaled magnitude spectra of the discrete
Fourier transform (DFT) and filter frequency response, respec-
tively. In our experiments, we used λ = 1.0, and γ = 0.1.

2.4. Dataset

To train our model, we generated a synthetic dataset consisting
of 500 convex shapes [16] along with their material parameters
and audio synthesised using modal synthesis.

In particular, each convex shape was represented by a point
set P , which was triangulated using Delaunay triangulation.
Subsequently, each triangular surface mesh M = (V,E, F )
with a set of V vertex positions, E edges and F faces was
rasterised into a 64 × 64 occupancy grid. Materials were ho-
mogeneous and isotropic, and their parameters were sampled
uniformly in the intervals ρ ∈ [500, 15000], E ∈ [8×109, 5×
1010], ν ∈ [0.1, 0.4], α ∈ [1, 10] and β ∈ [3×10−7, 2×10−6].
For each shape, 500 random materials were sampled.

Fig. 2. Inference results for test shapes, materials and po-
sitions. Top: Occupancy maps and indicated hit position in
red. Middle: FEM results’ spectrogram using traditional modal
synthesis. Bottom: Results using our proposed method. Here
the log-frequency log-magnitude spectrograms show that the
generated results closely resemble the original approach.

To assemble the stiffness and density matrices and solve the
generalised eigenvalue problem corresponding to each shape-
material pair, we used the scikit-fem [17] package. We com-
puted the first 32 modes for each object and projected a unit
impulse for each node in the mesh. Since each mesh has a
distinct tessellation, the number of triangles per mesh varied
between approximately 300 and 1000. Each vertex thus repre-
sents a unique combination yielding a total of approximately
100 million samples.

2.5. Training

We trained our models using the Adam optimiser with an initial
learning rate of 3×10−5 and an exponential decay of 0.9 every
300 steps. Models were trained until validation loss did not
improve for 20k steps. All models were trained with a batch
size of 64 on a single NVIDIA RTX A5000 GPU.

3. RESULTS

In Fig. 2 we illustrate our network’s predictions for samples
from a test dataset of 100 materials and shapes. We observe
that our method closely matches the frequency distribution of
the target signals while generalising well across shapes. We
provide comprehensive examples of audio rendered with our
system in the online supplement at http://rodrigodzf.
github.io/iir-modal/results.html, including au-
dio from the objects in Fig. 2, and interpolation of shape and
material parameters.

Our model appears to produce shorter decay times than
those in the target signal for modes of higher frequency. Fur-
ther, we note that the complex activation in Eqn 1 causes the
gradient magnitude to decrease as a pole approaches the unit
circle. It is thus possible that for higher frequency modes with
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96 vertices 426 vertices 1792 vertices

FEM 83.66ms 387.12ms 1728.25ms
Ours 16.75ms 22.03ms 85.86ms

Table 1. Processing time in milliseconds for the FEM solver
and our method. We average the processing time for 100
meshes of different resolutions. For the solver, we measure the
time required to solve the system for each mesh. In our case,
we add the inference time for a shape and material pair and the
inference time for a fixed number of coordinate positions.

lower amplitudes, this diminishing gradient slowed learning of
these resonances resulting in faster decays.

3.1. Computation time

To ascertain our method’s computational performance, we
compared its processing time to that of a conventional FEM
solver (as implemented in scikit-fem). Table 1 lists the pro-
cessing times of both methods for 96, 426, and 1792 vertices
averaged across 100 meshes of different resolutions.

Our method produces filter bank parameters for a set of 96
arbitrary co-ordinates in a mesh in 16.75 milliseconds using
a GPU. Subsequently rendering the audio is possible at negli-
gible computational cost using a recursive implementation of
the filter bank. In comparison, modal synthesis using the FEM
solver takes approximately 83.66 milliseconds to calculate the
mode gains and frequencies for a mesh with the same number
of vertex positions. The solutions are only available at the dis-
crete coordinate positions of the vertices. Increasing the num-
ber of mesh vertices, and thus obtaining solutions at finer steps,
increases the duration of processing.

To produce results for a mesh with 1792 vertices, the FEM
solver takes slightly over 1.7 seconds, while our method re-
quires only 0.08 seconds. Note that in these experiments we
generate a shape embedding even though the occupancy grid
does not necessarily change in the model input, and thus this
can be considered a worst case scenario bound on the actual
runtime of our model. If we cache the shape embedding, the to-
tal time is reduced to 0.01 seconds for this number of vertices.
Moreover, as our method does not need a re-discretization of
the shape, we can query filter parameters at any continuous val-
ued co-ordinate in the shape with the same constant processing
time. Further, our method is not restricted to simultaneously
querying multiple points in the mesh to render the sound for a
single position. Our approach is therefore preferable in real-
time and interactive synthesis for arbitrary shapes.

3.2. Filter-bank configurations and baseline comparison

To ascertain the optimal trade off between the cascade depth
M and the number of parallel filters L, we compared three
filter bank configurations such that the total number of poles
was constant, fixed at M · L = 64. We evaluated models
trained using these configurations on the test dataset using both
the frequency domain mean-absolute and mean-squared error.

Conditioning Filters and order MAE MSE

Ours
shape & material

16 × 8th order 4.324 20.854
32 × 4th order 0.504 0.574
64 × 2nd order 0.568 0.697

Baseline (shape only) - 0.107 0.183
Ours (shape only) 32 × 4th order 0.112 0.042

Table 2. Average log-spectrogram MAE and MSE for different
filter configurations, and a comparison with a baseline method.
We test our model using a different number of filters in parallel
of different order. The baseline was trained until no improve-
ment was observed for the last 100 epochs. The baseline’s ar-
chitecture is modified to accommodate our input (a non-sparse
2D grid). The shape-only results are for a single material.

In general, we observed that filter banks with a lower cascade
depth and, thus, a lower filter order converged faster.

Table 2 lists the results for these experiments. Convergence
was very poor for the highest order filter bank, with dramati-
cally higher errors than either of the other configurations. The
4th order filter bank achieved the best performance across both
metrics, suggesting a hybrid cascade/parallel topology is opti-
mal.

Additionally, we present a comparison between our model
and a modified version of Deep-Modal [7], which has been
adapted to work with 2D grids. The baseline scores on our
evaluation metrics are lower mainly because modal frequen-
cies are computed exactly from a subset of material parame-
ters, whereas our method learns to generate resonant poles at
the appropriate frequencies from material conditioning.

4. CONCLUSION

This paper presented a novel approach for synthesising con-
tact sounds for rigid surfaces of arbitrary shape and material
composition. Our method generates parameters for a resonant
IIR filter bank from shape, material, and excitation position
inputs. The generated filter bank is suitable for real-time im-
plementation, allowing realistic contact sounds to be produced
interactively using a variety of different excitation signals.

In this work, we limited shapes to two dimensions, but
we believe that extending the proposed method to 3D objects
simply requires adapting the shape encoder to use 3D convo-
lutional layers. Additionally, a future adaption of our model
could apply a discretization agnostic network [18] to learn
from different surface representations. The rest of the pipeline
would not require any alteration.

Finally, since the predicted filter bank can be excited with
any signal, we intend to explore the possibilities of complex in-
teraction on the object’s surface, along with a qualitative eval-
uation.
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