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Disembodied electronic sounds constitute a large part of the modern auditory lexicon, but
research into timbre perception has focused mostly on the tones of conventional acoustic
musical instruments. It is unclear whether insights from these studies generalise to electronic
sounds, nor is it obvious how these relate to the creation of such sounds. In this work, we
present an experiment on the semantic associations of sounds produced by FM synthesis with
the aim of identifying whether existing models of timbre semantics are appropriate for such
sounds. We applied a novel experimental paradigm in which experienced sound designers
responded to semantic prompts by programming a synthesiser, and provided semantic ratings
on the sounds they created. Exploratory factor analysis revealed a five-dimensional semantic
space. The first two factors mapped well to the concepts of luminance, texture, and mass.
The remaining three factors did not have clear parallels, but correlation analysis with acoustic
descriptors suggested an acoustical relationship to luminance and texture. Our results suggest
that further enquiry into the timbres of disembodied electronic sounds, their synthesis, and their
semantic associations would be worthwhile, and that this could benefit research into auditory
perception and cognition, as well as synthesis control and audio engineering.

1 INTRODUCTION

The term “timbre” refers to a set of perceptual attributes
that listeners use to discriminate different sounds in addi-
tion to pitch, loudness, duration, spatial position, and the
acoustic environment. Timbre is an inescapable component
of our auditory experience. It enables us to identify who is
speaking to us, to ascertain the source of a sound, and is
of central importance to the aesthetic experience of music
[1]. Increasingly, our timbral world is populated by sounds
with no discernible physical source, which we refer to as
disembodied sounds. Contemporary sound design tools and
sound reproduction apparatus pair to enable us to expe-
rience sounds seemingly unconstrained by the acoustics
of a physically resonating body. Such sounds now perme-
ate day-to-day life in the form of notifications and alerts,
heighten the visceral satisfaction we receive from movies
and games, and have defined entirely new audio cultures
[2]. Our understanding of timbre, however, is largely lim-
ited to insights gleaned from studies on musical instrument
sounds playing isolated notes. In this work, we set out to
systematically examine sounds that lack the kind of source-
cause associations afforded by musical instruments through
a novel experimental paradigm in which participants syn-
thesise electronic sounds prompted with well established
semantic dimensions of timbre.

Studying the perception of disembodied electronic
sounds may help further elucidate the mechanisms under-
pinning our experience of timbre [3, 4]. Specifically, the
way such timbres are talked about can disclose signifi-
cant information about the way they are perceived [5, 6].
Common semantic dimensions for musical instrument
sounds have been summarized as brightness/sharpness
(or luminance), roughness/harshness (or texture), and full-
ness/richness (or mass) [7]. A primary aim of this study
was to ascertain whether such dimensions are sufficient to
describe the timbral variability of sounds produced by a
frequency modulation (FM) synthesiser. We also set out
to identify whether prompting synthesis with semantic
descriptors would result in a discernable impact on the
control of synthesiser parameters.

Beyond psychoacoustic insight, inquiry into the percep-
tion of disembodied timbres can inform further research in
audio engineering and sound design. Many of today’s most
popular software and hardware synthesisers do not repre-
sent a significant progression from the approach of early
synthesisers – their controls continue to direct the synthesis
at a low level, with complex systems of interdependence,
limiting the ability of musicians and sound designers to
predictably alter the perceptual attributes of a sound [8].
Previous work aiming to facilitate synthesis control by map-
ping from a conceptual representation, such as a timbre dis-
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similarity space [9, 10], high level features [11], or spatial
representations of source-cause cues [12, 13] has focused
on perceptual insights from research on acoustic sound
sources. Thus, studying the perception of disembodied tim-
bres may also lead to insights into how synthesis control can
be improved to more closely map to our perception. To fa-
cilitate further research in this direction, we make available
the dataset of sounds generated in our study1. Alongside
rendered audio of all synthesised sounds, we provide full pa-
rameter configurations, semantic ratings, acoustic features,
and anonymous participant questionnaire responses.

1.1 From Sounds to Adjectives
The perception of timbre has enjoyed an extensive lin-

eage of scientific enquiry, dating at least as far back as
Helmholtz’s [14] treatise On The Sensations of Tone. It is
widely agreed to be a multi-faceted percept, and so two
prevailing approaches to its study – perceptual and seman-
tic – both seek dimensional decompositions of the timbre
gestalt [15]. The first approach aims to directly tap into
the perceptual structure of timbre by collecting pairwise
general dissimilarity ratings on a set of sounds. Multidimen-
sional scaling (MDS) techniques are then applied to recover
a spatial configuration known as “timbre space” in which
the distance between points corresponds to their perceived
timbral difference. Today, a number of MDS studies have
confirmed at least two robust perceptual dimensions of tim-
bre [16, 17, 18, 19]. These correlate well with the duration
of the attack part of the temporal envelope and the center
of gravity of the spectral envelope, respectively. Additional
dimensions appear to depend on the specific stimulus set.
More recently, a study applied a biologically inspired model
which involved learning kernel distance functions over data
from 17 previous dissimilarity studies [20]. Results showed
that as well as sharing general acoustic correlates, each
study’s dataset yielded a number of experiment-specific cor-
relates, suggesting that care should be taken in generalising
the results of any particular timbre study.

The second approach involves studying timbre percep-
tion indirectly through its semantic associations, that is, how
language is employed to describe the timbre of a sound via
crossmodal, onomatopoeic, or abstract metaphor [7]. Build-
ing on the underlying assumption that the perceptual at-
tributes of timbre are encapsulated in its verbal descriptions,
dimensionality reduction techniques such as exploratory
factor analysis (EFA) and principal components analysis
(PCA) are used to construct semantic timbre spaces from
ratings of stimuli along verbally anchored scales. These are
typically constructed either by two opposing descriptive
adjectives such as “rough-smooth” (known as the semantic
differential method [21]) or by an adjective and its nega-
tion as in “rough–not rough” (known as the verbal attribute
magnitude estimation method [22]).

This approach has a long history in empirical research
on timbre, being first used in 1958 to study sonar sounds

1The semantic FM dataset is available on Zenodo: https://doi.
org/10.5281/zenodo.4609790

[23], about a decade before the early MDS studies of the
1970s [16, 17]. It was first applied to musical sounds by von
Bismarck [24] in 1974, who used synthetic recreations of
instrumental and vocal timbres. It has since been employed
in numerous studies of musical timbre [25, 22, 26, 19, 27]
(for a comprehensive review, see [7]). Despite differences in
methodology (choice of verbal scales, dimensionality reduc-
tion technique) and stimuli, there is clear similarity between
the semantic dimensions recovered by many of these stud-
ies. Typically, a low-dimensional semantic space of timbre
can be interpreted in terms of brightness/sharpness, rough-
ness/harshness, and fullness/richness, although the precise
demarcations between dimensions vary [7].

Zacharakis et al. [27] performed an interlanguage study
with musically experienced Greek- and English-speaking
listeners, where responses from both linguistic groups were
well explained by a model which also exhibited these three
semantic dimensions. It was named the luminance-texture-
mass (LTM) model based on the strongest factor loadings
from both languages. A confirmatory study [28] using two
representative scales (highly loaded) for each of the three
factors, conducted with the same stimuli but Greek listeners
only, suggested the model was broadly effective for pre-
dicting both semantic ratings and pairwise dissimilarities.
However, the attack-time dimension emerging from anayl-
sis of pairwise dissimilarities, which differentiates more
impulsive from more sustained temporal envelopes, could
not be directly captured by the LTM dimensions.

More recently, a 20-dimensional model has been pro-
posed, derived from a mixture of interviews with and seman-
tic ratings by professional orchestral musicians, including
conductors and composers [29]. They were asked to imagine
orchestral instrument sounds rather than listen to recorded
stimuli, which allowed tapping into richer and more cre-
ative linguistic descriptions. The model dimensions include
rumbling/low/thick (L/M), soft/singing (T), watery/fluid, di-
rect/loud, nasal/reedy (M), shrill/harsh/noisy (L/T), percus-
sive (P), pure/clear, brassy/metallic (L/T), raspy/grainy (T),
ringing/long decay, sparkling/brilliant (L), airy/breathy,
resonant/vibrant, hollow (M), woody, muted/veiled, sus-
tained/even (P), open, and focused/compact. The parentheti-
cal initials potentially correspond to the three LTM factors
[27]; “P” indicates dimensions that relate to contrasting
temporal envelope types (percussive and sustained).

The majority of this research focuses on physical instru-
ments from the western tonal music canon. Where elec-
tronic and synthesised sounds do find use, it is typically
either for the purposes of simulating the sounds of familiar
acoustic instruments and the human voice [24, 25] or for
the creation of controlled stimuli designed to elicit a spe-
cific perceptual response [30, 31]. It is not currently clear
how well these multidimensional semantic models might
generalise to more abstract and disembodied sounds, of
the kind that increasingly populate the audio cultures of
today. To this end, a study of electronic and electroacous-
tic “textural” sounds indicated a five-dimensional seman-
tic space: ordered–chaotic, homogeneous–heterogeneous,
tonal–noisy, high/bright–low/dull (L), and smooth–coarser
(T) [5]. Two of these dimensions suggest that luminance and
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texture might generalise beyond the musical instrument do-
main. However, the tested textural sounds involved multiple
different timbres and/or iterative envelopes and/or varying
pitch profiles, all of which may not be suitable to examine
the intrinsic dimensions of timbre per se, as indeed attested
by the labels of the other three dimensions.

1.2 From Adjectives to Sounds
In the research discussed so far, the standard paradigm

involves listeners rating a set of sounds along scales defined
by descriptive adjectives. Stimuli are manipulated along
one or more acoustical dimensions and the aim is to explain
their perceptual effect on semantic associations. However,
this method does not address the relationship between tim-
bre and language from the opposite direction: How does the
perceptual experience of timbre, through its semantic asso-
ciations, relate to the creative process of sound design and
engineering? In other words, how do semantic associations
modulate acoustical response? This important question has
received considerably less attention in the psychoacoustical
literature, despite many relevant efforts to develop intuitive,
adjective-controlled interfaces for audio synthesis and pro-
duction [32, 33, 34, 35, 36, 37]. To explore this question,
here we used a semantically prompted FM synthesis task
and examined semantic associations of timbre through their
acoustical imprints on the creation of new sounds, effec-
tively reverse engineering the standard paradigm.

Controlling the generation of complex audio spectra was
made significantly easier by the invention of FM synthe-
sis. Introduced by Chowning [38] in 1973, it generates rich
spectra with nuanced patterns of spectral energy distribution.
Strictly speaking, FM synthesis as formulated by Chown-
ing, and as subsequently implemented in numerous com-
mercial synthesisers, applies phase modulation rather than
frequency modulation. That is, the carrier sinusoid is modu-
lated by way of an additive term, rather than a multiplicative
one. Pairing each oscillator with an amplitude envelope al-
lows for further control of the spectrotemporal evolution
of a sound. An FM synthesiser can be highly timbrally
expressive with only a small number of oscillators, and
thus a limited number of parameters. FM synthesis quickly
found application in a variety of commercial synthesisers,
including Yamaha’s legendary DX7, and its timbral palette
became highly influential on popular music over the sub-
sequent decades, but also in timbre research. In their 1995
timbre dissimilarity study, McAdams et al. [18] used sim-
ulations of traditional western instruments synthesised by
Wessel et al. [39] on a Yamaha TX802 FM Tone Generator.
An earlier study of timbre semantics by Ashley [40] in-
volved an FM system that “learned” to map certain controls
with adjectives from users’ verbal descriptions to changes
in timbre.

FM timbres, therefore, are ideal as an object of study.
They can be familiar enough as sonic entities to be dis-
tinctly identifiable and to attract a varied aesthetic vocabu-
lary, whilst being abstract enough to avoid inherently im-
plying a distinct source-cause. Wallmark et al. [41] were
the first to task a sample of classically trained musicians

with creating a new timbre in response to adjectives sourced
from orchestration books. To do so, participants explored a
two-dimensional space that linearly mapped to the controls
of a simple FM synthesiser consisting of one modulator and
one carrier. The experimental interface played a continuous
tone at a fixed carrier frequency, whose spectral properties
were shaped by the 2D controller. It also included a slider
that controlled a distortion amplifier. Results suggested a
relationship between word affect (valence and arousal) and
certain distinct acoustical profiles. For instance, in response
to both positive and negative high-arousal words such as
brilliant or bright and rough or harsh, musicians crafted
sounds with more strength in higher frequencies and inhar-
monicity.

1.3 The Present Study
The present study investigated how semantic associations

modulate timbre perception (from adjectives to sounds) and
vice versa (from sounds to adjectives) in the context of
disembodied electronic sounds. These questions were ap-
proached by adapting the prompted synthesis paradigm [41]
to enable comparative prompts (e.g., create a sound that is
rougher or less rough than a played reference) followed by
comparative ratings (e.g., rate how much rougher or less
rough the created sound is from the reference). To promote
ecological validity adjectives were collected from an on-
line message board for modular synthesiser enthusiasts, and
the study focused on timbres created by music and audio
technologists with experience in sound design and synthe-
sis. We carried out exploratory factor analysis of compara-
tive semantic ratings and principal components analysis of
acoustic features extracted from the created sounds. Linear
regression and correlation analyses subsequently enabled
us to quantify the interrelations between language, psychoa-
coustics, and the adjustment of synthesiser controls.

Where the design of Wallmark et al. [41] focused solely
on the effects of spectral energy distribution, as participants
were shaping only static aspects of a continuous tone, here
we sought to incorporate spectrotemporal and purely tem-
poral aspects of the FM sounds by providing a full set of
amplitude envelope controls. We also applied three distinct
fundamental frequency (F0) conditions for each compara-
tive prompt. In research on timbre it is usual to equalise
the F0 of stimuli as pitch and timbre are known to interact
[42, 43]. Here we wanted to explore whether such interac-
tion would exert an effect on synthesiser parameter control,
that is, on shaping timbre. We also wanted to examine the
influence of F0 on the semantic dimensions of FM sounds.

2 METHOD

2.1 Participants
Thirty people took part in the experiment (mean age

µ = 28.7 years; standard deviation σ = 7.52 years; range
21-55 years). All spent their formative years in an English
speaking country and self-reported prior synthesis experi-
ence via music production or sound design. They completed
the Perceptual Abilities and Musical Training subscales of
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the Goldsmiths Musical Sophistication Index (GoldMSI)
inventory [44]. Compared to the reference statistics pro-
vided with GoldMSI, participants scored higher on Musical
Training (this study: µ = 35.4; reference study: µ = 26.5)
with a narrower distribution of scores (this study: σ = 6.67;
reference study: σ = 11.4). Scores for Perceptual Abilities
were slightly higher (this study: µ = 53.4, σ = 5.16; refer-
ence study: µ = 50.2, σ = 7.86). Participants gave written
informed consent prior to the experiment. The study was
approved by the Queen Mary Ethics of Research Committee
(ref: QMREC2352a) and conducted in accordance with the
Declaration of Helsinki.

2.2 Word Stimuli
To maximise the appropriateness of word stimuli selec-

tion to synthesised sounds we adopted a corpus-based ap-
proach, mining descriptors from a popular modular syn-
thesis forum2. We collected publicly available posts from
the forum dating up to 21st February 2020, for a total of
1,407,604 posts. After lemmatisation, the corpus contained
330,700 unique tokens. Posts were filtered to a frequency-
sorted list of words co-occurring in bigrams with the terms
sound, sounding, tone, and timbre, which were then fur-
ther filtered to retain only adjectives using NLTK’s part of
speech tagger. This resulted in a list of 96,277 potential de-
scriptions of timbre of which 5,977 were unique tokens. The
50 most frequently used timbral adjectives are displayed in
Appendix A.1.

The list was independently pruned by two raters accord-
ing to a set of criteria (given in Appendix A.2), resulting in
a final set of 27 adjectives (see Table 1). To ensure variance
along the LTM semantic dimensions, three descriptions
were selected as prompts for the synthesis task, namely
bright, thick, and rough. These were selected by filtering the
set of 27 adjectives to only those that showed high loadings
onto the English LTM factors in [27]. For example, brilliant
and bright loaded highly onto the luminance factor. We then
retained the word with the highest frequency in our corpus
for each factor – e.g. bright in the case of the luminance
factor.

2.3 Synthesiser
In its simplest form, FM synthesis can generate rich and

complex timbres by time-varying the phase of an oscillator
(carrier) via the output of a second oscillator (modulator)
[38]. This is illustrated by equation 1:

x(t) = Asin(ωct + I sinωmt), (1)

where A is the overall amplitude, ωc the carrier frequency,
ωm the modulation frequency, and I the modulation index.
Note that equation 1 strictly describes phase modulation
rather than frequency modulation, which produces an equiv-
alent magnitude spectrum when using sinusoidal oscillators.
As FM synthesisers are typically implemented with phase

2https://www.modwiggler.com/forum/

modulation, we used this formulation for our experimental
synthesiser.

The synthesiser used in the experiment consisted of three
sinusoidal oscillators (hereafter also referred to as operators)
with an accompanying amplitude envelope and frequency
modulation input. Operators #2 and #3 modulated the phase
of operator #1 in linear combination (see Fig. 1). Each
operator’s amplitude was modulated by an independent
ADSR (Attack, Decay, Sustain, Release) envelope. The
attack portion was a linear ramp. The decay and release
portions were exponential ramps where the segment length
described the time taken to fall 1− 1

e of the way to the
target value. Our experimental synthesiser is thus given by
equation 2:

x(t) = Aε1(t)sin(ω1t + I2ε2(t)sinω2t + I3ε3(t)sinω3t),
(2)

where ωi gives the frequency of the ith operator, εi(t)
gives the amplitude envelope value of the ith operator at
time t, and Ii gives the modulation index of the ith operator.

Participants were presented with a set of user controls
for the FM synthesis parameters. In order to be consistent
with the interfaces of popular FM synthesisers, the operator
tuning ratio parameters were divided across two controls:

Mod
freq.

Mod
freq.

Carrier
amp.

Mod
index

Mod
index

Carrier
freq.

Fig. 1. A schematic diagram of our three operator frequency mod-
ulation synthesiser

Fig. 2. The FM synthesis interface used by the participants
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coarse and fine. The coarse control specified the integer
part of the tuning ratio, whilst the fine control specified the
fractional part at a resolution of one thousandth. Dividing
the controls in this way provides two benefits to the sound
designer. Firstly, they are able to quickly explore harmonic
tuning ratios by fixing the fine control at zero. Secondly, as
the sideband distribution is very sensitive to the tuning ratio,
the precision of the fine control enables careful exploration
of inharmonic values. In order to control for pitch and am-
plitude within trials, operator volume and tuning controls
were only made available for modulating operators. This
interface is shown in Fig. 2.

2.4 Procedure
Due to COVID-19, the study was conducted remotely.

Participants accessed the experiment through a web browser
and were instructed to use high quality headphones. Recent
work suggests that timbre spaces constructed from pairwise
dissimilarities collected online show good configurational
similarity to those constructed from ratings collected in a
laboratory setting [45]. The study was built using lab.js [46]
and the WebAudio API’s AudioWorklet was used to build a
real-time in-browser FM synthesiser.3

The experiment consisted of a series of nine functionally
identical trials, covering each combination of three com-
parative semantic prompts representing the LTM factors
(brighter or less bright, thicker or less thick, rougher or less
rough) and three pitches (E2, A3, D5) representing the low,
middle, and high registers. The direction of comparison
(less or more) was selected randomly each time (i.e. the
number of trials was always nine). Each trial consisted of
three steps:

1 A browser-based FM synthesiser was pre-set to generate
a particular sound (the reference sound) with parameters
pr. Participants adjusted the controls to produce a new
sound (the created sound) with parameters pc to fulfil the
given comparative prompt (e.g., to create a sound that is
brighter or less bright than the reference).

2(a) Participants rated the magnitude of the difference be-
tween the sounds described by pr and pc in terms of the
given prompt (e.g., how much brighter or less bright c is
with respect to r). Ratings were input using a horizontal
slider with a hidden range of 0.0 to 10.0 and a resolution
of 0.1.

2(b) Participants rated the magnitude of the difference be-
tween the sounds described by pr and pc in terms of the
remaining two prompts (e.g. thick and rough if the initial
prompt was bright) and the 24 additional timbral adjec-
tives. Ratings were input using a horizontal slider with a
hidden range of -10.0 to 10.0 and a resolution of 0.1.

During each step, participants were able to listen to both
the reference and created sounds as many times as they

3Source code for the study is available in a GitHub repository:
https://github.com/ben-hayes/fm-synth-study

wished. There was no time limit imposed on any step. This
procedure is illustrated in Fig. 3.

In each trial, the starting values of the synthesiser’s pa-
rameters were given by randomly selecting an entry from
the database of sounds created by previous participants.
This approach enabled data to be collected on a wider range
of parameter combinations than would be possible if the
synthesiser were initialised identically for all participants.
Given the sound design expertise of the participants, this
approach also enabled us to focus our analysis on regions
of synthesiser parameter space that are of interest to expe-
rienced synthesists. Limitations of this approach are dis-
cussed in section 4.3. To start this process, the database was
initialised with a starting set of nine “seed” sounds, which
were hand-designed by the first author and loosely based on
popular DX7 patches.

3 RESULTS

3.1 Exploratory Factor Analysis
We conducted initial reliability analyses using Cron-

bach’s α . All 27 semantic scales showed high internal con-
sistency, average α = .95 and σ = .003. Subsequently, ex-
ploratory factor analysis was performed on the comparative
ratings given across all 27 adjectives. Factor analysis is a
technique for computing a set of latent factors from data,
incorporating an independent stochastic error for each vari-
able and observation. Each observation of a given variable
can be considered as the sum of some amount of common
variance (referred to as communality) and some amount of
specific variance (consisting of any variance unique to that
variable, plus any observation error).

To build a factor model from comparative ratings, we
assume these are estimates of the difference between two
unobserved absolute ratings Xdiff = Xc − Xr + εdiff, where
Xdiff is the matrix of comparative ratings, Xc and Xr are
matrices of the unobserved absolute ratings of created and
reference sounds respectively, and εdiff is a normally dis-
tributed observation error of mean zero and finite variance.
As a consequence of model linearity, it follows that a factor
model of comparative ratings Xdiff estimates the same load-
ing matrix as a theoretical factor model of the unobserved
absolute ratings given by a union of the elements of Xc and
Xr (see Appendix A.3).

Selecting an appropriate number of factors is the subject
of extensive discussion in the literature, and many methods
remain in use. Fabrigar et al. [47] provide a review of such
methods and a discussion of their strengths and weaknesses.
Amongst the most popular are the Kaiser criterion, Cattell’s
scree test, and Horn’s parallel analysis. The Kaiser criterion
[48] involves retaining as many factors as there are eigenval-
ues of the correlation matrix≥ 1.0. In Cattell’s [49] method,
a scree plot (correlation matrix eigenvalues plotted against
their indices) is inspected with the aim of identifying an
”elbow” point which signifies an appropriate number of fac-
tors. Horn’s parallel analysis [50] is a bootstrap method in
which an identical factor analysis procedure is conducted on
a large number of normally distributed random datasets of
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Step 1: synthesis Step 2(a): prompt rating Step 2(b): semantic ratings

Participant

Reference
sound

Reference
synthesis

parameters

Semantic
prompt

Participant

Reference
sound

Created
sound

Semantic
prompt

Prompt
magnitude

rating

Participant

Reference
sound

Created
sound

26 VAME
scales

Comparative
semantic
ratings

Adjusted
synthesis

parameters

Created
sound

Fig. 3. A schematic diagram illustrating the experimental procedure for a single trial, repeated for each prompt and register. Step 1
(orange): participants synthesise a sound in response to a prompt. Step 2(a) (blue): participants rate the difference between the reference
sound and their created sound in terms of the prompt. Step 2(b) (red): participants rate the difference between the reference sound and
created sound in terms of 26 semantic descriptors.

identical shape to the real data. The eigenvalues or sums of
squared loadings (depending on the method) of the real data
are then compared to a threshold statistic (usually the 95th
percentile) from the randomly generated data. The num-
ber of values for which the real data exceeds the threshold
statistic signifies the appropriate number of factors.

Empirical comparisons of these methods and others sug-
gest that parallel analysis more reliably estimates the appro-
priate number of factors from both real [47] and synthetic
[51] data. Conversely, the Kaiser criterion consistently sug-
gested a model with too few factors in the case of real
data, and too many factors when applied to synthetic data.
With both real and synthetic data, the scree method was
found to be variable in its accuracy and ambiguous in its
interpretation. Accordingly, here we explored a semantic
space for the created timbres using parallel analysis, which
supported a five factor solution (Fig. 4). Factor analysis
was performed using maximum likelihood estimation with
non-orthogonal Oblimin rotation. A non-orthogonal rotation
method was selected to avoid imposing assumptions about
the independence of semantic factors. The factors cumula-
tively accounted for 74.36% of data variance. Individual
factor variance is not available for the rotated solution due
to the non-orthogonality of the factors.

The loadings of factors onto semantic descriptors are
shown in Table 1. Factor F1 showed strong loadings onto
terms associated with both luminance (including sharp) and
texture (metallic, harsh). Factor F2 showed strong loadings
onto terms related to mass (big, thick, and negatively thin).

1 2 3 4 5 6 7 8 9 10
Factor

0

2

4

6

8

10

E
ig
en

va
lu
e

Random Data Mean
Random Data 95th Percentile
Real Data

Fig. 4. A scree plot comparing the factor eigenvalues of our
dataset to the mean and 95th percentile of the factor eigenval-
ues of the stochastic datasets generated in parallel analysis. Here,
we see that the procedure supports 5 factors at the 95th percentile
level.

Factor F3 showed strong loadings for the words clean and
clear, factor F4 for plucky and percussive, and factor F5 for
raw. Proposed labels for each factor were chosen on the
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Table 1. Factor loadings of semantic scales after Oblimin rotation. Suggested factor labels are given in parentheses.

F1 F2 F3 F4 F5

(Sharpness) (Mass) (Clarity) (Percussiveness) (Rawness)

sharp .82 −.07 .06 .16 .07

metallic .75 .05 −.05 .09 .11

bright .73 −.22 .04 .10 .05

harsh .72 .01 −.18 .08 .15

big .30 .87 −.03 −.16 −.04

thick −.15 .84 −.10 .02 −.04

deep −.43 .70 .00 −.07 .06

thin .32 −.70 .20 .11 .02

clean −.04 .02 .90 −.02 −.01

clear .17 −.04 .78 .07 −.03

plucky −.04 −.09 .07 .99 −.05

percussive .04 −.02 −.06 .78 .06

raw .01 −.12 .12 .01 .78

rich .32 .69 .08 −.06 −.03

dull −.69 −.12 .02 −.25 −.03

mellow −.67 −.04 .17 −.12 −.15

woody −.63 .20 .01 .23 −.18

warm −.60 .42 .17 −.06 −.01

dark −.58 .51 .06 −.05 .19

aggressive .57 .27 −.06 .15 .33

sweet −.03 .13 .43 .10 −.56

noisy .52 .10 −.40 .11 .12

hard .49 .24 −.14 .24 .23

smooth −.49 .00 .40 −.24 −.08

complex .48 .36 −.35 .10 −.11

gritty .48 .26 −.32 .18 .17

rough .42 .16 −.26 .21 .29

Bold type indicates loadings with an absolute value greater than .70.

basis of either the highest-loading word (F1 and F5) or one

Table 2. Inter-factor correlations and angles

F1 F2 F3 F4

F2
−.08

(94.4◦)

F3
−.42 −.30

(114.6◦) (107.7◦)

F4
.51 −.17 −.27

(59.3◦) (99.6◦) (105.4◦)

F5
.37 .07 −.44 .31

(68.3◦) (85.8◦) (116.2◦) (72.1◦)

that we thought would better capture the meaning of the
corresponding dimension (F2–F4).

Table 2 reports the inter-factor correlation coefficients
(r) after rotation, as well as the angles between rotated
factors (angle = cos−1(r)). There appeared to be moderate
collinearity between F1 and F3–F5, and between F2 and
F3, implying a degree of semantic entanglement across
all five factors in the model. The lowest correlations were
odbserved with F2, suggesting that impressions of mass
in these FM sounds might have been perceptually more
distinct from the other four semantic dimensions.

3.2 Acoustic Features Analysis
To study the psychoacoustic underpinnings of the seman-

tic space, a large set of acoustic features were extracted
from the created sounds. Spectral features were computed
on multiple representations, namely STFT magnitude and
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power spectra, Bark frequency magnitude spectrum, and
harmonic peak magnitudes [52]. Further, harmonic features
including inharmonicity, odd-to-even ratio, and tristimu-
lus, and purely temporal features including log attack time,
temporal centroid, and zero-crossing rate were computed.

Spectral features were computed using a Hamming win-
dow of size 1024 with an overlap of 75%, and silent frames
were discarded. Framewise features were summarised by
the median and interquartile range. All features were com-
puted using the Essentia library for Python. Synthesiser
patches were rendered at 44.1kHz with a duration of 4 sec-
onds. The ADSR envelope was controlled by a gate signal
which was on (attack, decay, and sustain) for 3 seconds, and
off (release) for 1 second.

The extracted features can not be assumed to correspond
to independent axes of variation in the sounds under anal-
ysis. Indeed, many features exhibit strong correlation. In
order to address this issue, we followed a feature dimen-
sionality reduction procedure based on that of Zacharakis
et al. [27]. Their approach involved three reduction steps:
firstly, they eliminated multicollinear features by inspect-
ing Spearman rank correlation coefficients and discarding
one member of any pair where |ρ| > 0.8. Secondly, they
inspected the Kaiser-Meyer-Olkin (KMO) measure of sam-
pling adequacy, defined as:

KMOi =
∑ j 6=i r2

i j

∑ j 6=i r2
i j + ∑ j 6=i ui j

where R is the data correlation matrix and U is the data par-
tial correlation matrix, that is, the correlations between pairs
of variables controlling for the influence of other variables
in the analysis. Variables with KMO < 0.5 were discarded.
Finally, they performed PCA with Varimax rotation on the
remaining features.

Whilst this three-step method addresses the issue of corre-
lated feature clusters, the remaining variables and, therefore,
the structure of the resulting component space are highly
dependent on which member of each collinear pair is re-
tained in the first step. We found that on several runs of
the procedure with different orderings of variables in the
first step, drastically different PCA solutions were found.
Therefore, to improve reproducibility and select the most
representative principal components, we introduced an extra
step before the reduction procedure wherein features were
sorted by their maximum absolute Spearman rank correla-
tion coefficent with any of the semantic factors. Then, the
member of each collinear feature pair with the lowest such
factor correlation was discarded. We believe this filter-based
approach to be sufficient for the task of identifying acous-
tical correlates and thus leave deeper analysis of features
and the application of alternate feature selection methods to
future work.

Owing to the large number of features computed, we set
our threshold for the Spearman rank correlation coefficient
at 0.7 and for the KMO measure of sampling adequecy at
0.7. This resulted in a set of 17 descriptors, which are listed
in Table 3. Parallel analysis, performed on the resulting set
of features, supported a 4 component solution at the 95th

percentile level. PCA was followed by Varimax rotation
to achieve simple structure. The resulting component load-
ings are shown in Table 3. Features with loadings above a
threshold (set at 0.75) are used to label components.

The first component shows above-threshold loadings for
the medians of spectral decrease [53], Bark spectral spread,
and crest factor. It also showed above-threshold loadings
for IQRs of the skewness and kurtosis of the STFT power
spectrum and harmonic magnitudes. This somewhat contra-
dictory combination of spectral features implies this compo-
nent describes a continuum between specific spectrotempo-
ral profiles. The second component shows above-threshold
loadings for median harmonic decrease, and for the IQRs
of frame energies in both the STFT power and harmonic
magnitude spectra. It also showed a positive loading for
effective duration. These loadings suggest this component
describes a sound with a longer sustain and high temporal
energy variation.

The third component shows above threshold loadings
for the IQRs of STFT magnitude flatness and STFT power
crest factor. These loadings imply that a sound with a high
score on this component would contain spectrotemporal
modulations that vary between a flat spectral distribution
(typically indicative of a noisy or inharmonic sound) and a
spectrum with a distinct crest. This may suggest that sounds
with a high loading on this component may be more likely
to make use of the amplitude envelopes of the synthesiser’s
modulating operators. The final component shows an above
threshold loading for the IQR of STFT magnitude crest
factor. This suggests that sounds with a high score on this
component may, again, employ the amplitude envelopes of
the modulating operators in a way that moves between a
pronounced spectral peak and a more even energy distribu-
tion.

Table 4 shows Spearman rank correlation coefficients
between the five semantic factors and the four acoustic com-
ponents. To accommodate the comparative nature of the
semantic ratings, analysis was performed using the differ-
ence between the created sound and its reference along each
acoustic component. In interpreting these coefficients and
their significance, it is important to take into account the
large number of sounds in this analysis (n = 270), as well
as the inherent noise in the dataset caused by the single
rating provided for each sound and the subjectivity of as-
signing a value to the applicability of a semantic descriptor.
In particular, whilst many correlations were significant at
the p < 0.001 level, the strengths of their relationships were
moderate. The first factor (sharpness) showed significant
negative correlations with components PC1, PC2, and PC4,
and a significant positive correlation with component PC3.
Factors F3-F5 all share a pattern of highly significant cor-
relations with components PC1 and PC3, with factor F3
inverted compared to the other two. The second factor (as-
sociated with mass) did not show significant correlations
with any of the principal components of acoustic variation.
Similarly, there was no influence of stimulus F0 on any of
the semantic factors.
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Table 3. Principal component loadings of acoustic features after varimax rotation

PC1 PC2 PC3 PC4

Spectrotemporal
(distribution) & spectral

shape

Temporal energy
variation & spectral

slope

Spectrotemporal
(flatness)

Spectrotemporal (crest
factor)

STFTpow kurtosis IQR 1.00 .00 .00 .00

STFTpow skewness IQR .95 .08 −.30 .02

Bark spread median .82 .57 −.02 −.11

STFTmag decrease median .78 .48 −.40 .02

Bark crest median .76 .61 .23 −.03

Harmonic kurtosis IQR .76 −.13 −.19 −.61

STFTpow frame erg IQR .00 1.00 .00 .00

Harmonic frame erg IQR .46 .82 .20 −.28

Effective duration −.44 .80 .36 −.21

Harmonic decrease median .10 .76 .16 .62

STFTmag flatness IQR .00 .00 1.00 .00

STFTpow crest IQR .19 −.21 .94 .19

STFTmag crest IQR .00 .00 .00 1.00

STFTmag centroid IQR .67 .31 −.47 .48

STFTpow kurtosis median .69 .42 .13 .58

STFTpow skewness median −.18 .71 −.64 −.22

Bark centroid median .66 .72 .09 .18

Bold type signifies absolute component loading > 0.75. Features with loadings at this level are used to label components, as in [27]

3.3 Synthesiser Parameters
We next set to inspect the perceptual imprints of timbre

on the sound design process. In order to identify whether se-
mantic prompts and the direction of comparison exerted an
effect on the adjustments made to synthesiser controls, lin-
ear regression models were computed for every ∆(pc − pr)
and F0 with comparative prompt as a categorical variable
with six levels, i.e., three adjectives in two directions of
comparison. Estimated regression slopes (β coefficients)
served as indicators of effect size (see Fig. 5).

We observed similar patterns of linear effects on changes
to the modulator tuning and volume parameters for brighter,
less bright, and less rough prompts, with the polarity of the
effects inverted for the ”less” prompts. These effects were
also present for rougher, though are less pronounced. Given
the properties of FM synthesis, these similarities are intu-
itive: these parameters directly dictate the intensity, energy
distribution, and partial distribution of the modulated signal.
The more thick prompt showed consistent effects on the
amplitude envelope controls of both the carrier and modu-
lating operators. This suggests that thickness is modulated
by manipulating both the sustain of overall amplitude and
the sustain of sideband energy. However, the width of the
95% confidence intervals of these effects implies a large
degree of variance in how these controls were actually used
in response to prompts. In the case of modulator controls,
this may be explained by their equivalence in the architec-
ture of our synthesiser – that is, swapping the control values

of operators 2 and 3 results in an identical sound being
produced. Achieving a change in accordance with a given
prompt may therefore not require the manipulation of all
controls capable of achieving changes along that seman-
tic dimension, thus weakening the statistical relationship
between each such control and its corresponding prompt.

In general, we observed that prompt effects on tuning and
volume controls were consistently stronger than on ADSR
envelope controls. This may be partially due to the interde-
pendence of synthesis parameters – the strength and nature
of the effect of the ADSR parameters of a modulating oper-
ator are dictated by the values of the corresponding tuning
and volume controls. For example, if the volume control
of an operator is very low, the strength of the effect of the
envelope sustain control may be almost imperceptible. How-
ever, the weak ADSR effects are probably due mostly to the
lack of a prompt that explicitly describes temporal charac-
teristics of a signal. As an explicit percussive-plucky factor
emerged in our analysis of post-hoc semantic ratings, such
a prompt would be a useful addition to future applications
of this prompted synthesis paradigm.

To examine the relationship between adjustments to syn-
thesiser controls, semantic factors, and the principal axes
of acoustical variation, we computed Spearman’s rank cor-
relation coefficient computed between synthesiser control
changes ∆(pc − pr), semantic factor scores, and differences
between created/reference sounds along acoustic principal
components. These values are displayed in Fig. 6. Corre-
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Table 4. Spearman rank correlation coefficients between semantic factors and acoustic feature principal components, as well as
fundamental frequency.

PC1 PC2 PC3 PC4

Spectrotemporal
(distribution) &
spectral shape

Temporal energy
variation & spectral

slope

Spectrotemporal
(flatness)

Spectrotemporal
(crest factor)

F0

Factor 1 (Sharpness) −.58∗∗∗ −.37∗∗∗ .49∗∗∗ −.25∗∗∗ −.01

Factor 2 (Mass) .09 −.02 .09 .03 .08

Factor 3 (Clarity) .29∗∗∗ .17∗∗ −.44∗∗∗ .04 −.03

Factor 4 (Percussiveness) −.24∗∗∗ −.03 .31∗∗∗ −.14∗ −.02

Factor 5 (Rawness) −.22∗∗∗ −.10 .34∗∗∗ −.10 −.05

∗ : p < 0.05; ∗∗ : p < 0.01; ∗∗∗ : p < 0.001

lations were generally strongest across all factors for the
tuning and volume controls of the modulating operators,
suggesting these exerted a larger influence over both se-
mantic ratings and the resulting acoustic properties of syn-
thesised sounds. Modulator volume, however, appeared to
exhibit almost no relationship with factor F2 (mass), whilst
correlating significantly with all other semantic factors and
acoustic principal components. This may imply that the
concept of semantic mass is less significantly influenced by
the sideband energy in the signal.

Comparatively, correlations with ADSR enevelope con-
trols were generally weaker, although the carrier operator’s
attack control showed moderately strong inverse relation-
ships with factors F1 (sharpness), F4 (percussive), and F5
(rawness). Modulator attack controls also showed moder-
ate negative correlations with F4 suggesting, as might be
expected from musical intuition, that greater percussive-
ness is characterised by both a shorter attack portion in
the amplitude envelope with a short transient with a wider
spectral distribution. Again, the weaker relationships seen
in other envelope controls may have arisen due to the lack
of a specifically temporal prompt descriptor.

4 DISCUSSION

We explored the semantic correspondences of a wide
variety of sounds produced through FM synthesis using a
novel experimental paradigm based on a prompted synthesis
task. Experienced sound designers both created sounds in
response to prompts and provided semantic ratings on the
sounds they produced. We studied these responses by con-
structing a semantic timbre space using exploratory factor
analysis and performed a correlation analysis with the prin-
cipal components of a set of acoustic features. Finally, we
examined the influence of semantic prompts on the sound
design process by fitting linear models to synthesiser pa-
rameter changes.

The five factor semantic space for FM sounds identi-
fied by the analysis in the previous section showed strong
loadings for timbral descriptions associated with the LTM
dimensions observed previously for acoustic and electroa-
coustic instrument tones [27, 7], but also exhibited a distinct
structure in response to the specificities of FM signals. The

recurrence of LTM-like factors in this and previous studies
indicates that these concepts may generalise well across
timbral domains, whilst the occurrence of more highly spec-
ified factors suggests that these concepts alone do not form
a complete timbre semantic model. In interpreting these
results, it is crucial to be mindful that these observations
can not be assumed to generalise beyond the timbral domain
of our experimental FM synthesiser. Continued enquiry into
the full diversity of electronic sound is needed to understand
the extent to which our findings are due to specificities of
FM synthesis.

4.1 Implications for the perception and semantic
processing of timbre

The first factor, which we labelled sharpness, showed
strong loadings for both luminance and texture related
words, though less so for rough and smooth, suggesting
it may represent an amalgam of attributes relating to these
two semantic dimensions. It has been suggested that a sharp
timbre is one that is both bright and rough [54]. The acous-
tic principal component correlates of F1 were the strongest
seen across all five factors, suggesting it may be more
closely related than other factors to the main aspects of
acoustic variation in the created sounds. This was also the
case for the musical timbres investigated in [27] where, al-
beit separately, the two luminance and texture factors shared
their most significant acoustic correlations.

In the context of FM synthesis, where the introduction of
brightness (in the form of high frequency energy) is closely
linked to the introduction of inharmonicity through phase
modulation, an entanglement of luminance and texture may
follow naturally. Thus, the closer alignment of these two
semantic concepts in our study could be a direct result of
the chosen method of synthesis. The similarities between
the effects of bright and rough prompts on modulator vol-
ume and tuning synthesiser controls (Fig. 5) might further
support this interpretation. That is to say, the same controls
were used when participants were asked to modulate the per-
ceived brightness as when asked to decrease the perceived
roughness. However, prompts to increase roughness did not
result in quite so strong an effect, suggesting there may exist
a degree of independence between brightness and roughness
which could not be entirely captured by our factor model.
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Fig. 5. Linear effects (β ) of comparative semantic prompt derived from linear regression for every FM synthesiser control change and
fundamental frequency. Error bars correspond to 95% confidence intervals. A = attack; D = decay; S = sustain; R = release; T = tuning; V
= volume; 1 = carrier; 2/3 = modulators.

Acoustic correlations for the second semantic factor
(mass) were less clear. On the one hand, this might be the
result of our acoustical analysis lacking an audio descriptor
or a set of descriptors that adequately capture the concept
of sound mass. Alternatively, it is plausible that a number
of possible combinations of characteristics independently
associate with auditory mass, and the scale and structure of
our dataset has obscured any such individual correlations.
Indeed, the two most highly correlated acoustic principal
components (PC1 & PC3) described changes in the shape
and flatness of the spectral distribution over time, which
might suggest that the semantic dimensions of this set of
FM synthesiser sounds are best characterised by modulation
of these spectrotemporal characteristics. Recent work shows
that spectrotemporal modulation representations could ex-
plain a higher amount of the variance in semantic ratings of
sound mass than classical audio descriptors of the type used
here [55].

The third (with strong loadings for clean and clear) and
fifth (with a strong loading for raw) factors described more
nuanced aspects of timbral variation, specific to FM synthe-
sised sounds. FM synthesis provides fine-grained control
over the distribution of partials, with the energy distribu-

tion over sidebands governed by Bessel functions of the
modulation index [38]. It is plausible that certain aspects of
variation between FM synthesised sounds are pronounced
enough to be differentiated by similarly fine-grained seman-
tic dimensions, and may otherwise be less separable in other
contexts. For instance, in the LTM study English listeners
perceived messy acoustic and electroacoustic instrument
tones to also be rough and, to a lesser extent, thick, while
scales like clear and dirty were dropped from the final factor
analysis due to high correlation with other scales [27].

On the other hand, the emergence of a plucky/percussive
dimension (factor F4) in the present study might be inter-
preted from a methodological angle. Interacting with the
synthesiser’s ADSR envelopes may have encouraged partic-
ipants, who also had significant prior sound design experi-
ence, to be particularly sensitive to the temporal shape of
the sounds they actively created, where they might not be
in a conventional passive listening design. Indeed, factors
proposed across several such investigations of timbre se-
mantics, including the LTM study, appear generally unable
to capture the salient perceptual dimension of timbre respon-
sible for discriminating between sustained and impulsive
sounds [7, 28].
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Whilst this factor shows weak to moderate correlations
with some acoustic components, no relationship was ob-
served with the only component (PC2) associated with a
descriptor related to temporal energy (effective duration). It
is possible that, in the context of FM synthesised sounds, the
attributes insinuated by the terms percussive and plucky are
not well characterised by purely temporal descriptors. These
terms may, for example, be more suggestive of particular
profiles of spectrotemporal evolution. They are also distinct
from other semantic descriptors in both our analysis and
previous work [19, 27] as, instead of being metaphors for
timbral characteristics, they may be directly suggestive of
source-cause categorical cues such as striking and plucking.
Timbrally, these are typically associated with an instanta-
neous attack transient, after which the signal energy decays.
It stands to reason then that the inclusion of percussive and
plucky scales might have been sufficient to elicit discrimina-
tion of such timbral characteristics, despite this not being a
principal component of acoustic variation.

4.2 Relationship between semantic factors and
synthesis parameters

We observed significant correlations between the ob-
served semantic factors and adjustments made by partic-
ipants to synthesis parameters (Fig. 6). In order to interpret
these correlations, it is helpful to understand how the pa-
rameters of an FM synthesiser influence the resulting signal
at a high level. Thus, we propose conceptually dividing the
parameters of our synthesiser into the following four groups,
based on their effects:

1. Amplitude temporal evolution: carrier attack (A1), de-
cay (D1), sustain (S1), release (R1).

2. Spacing between sideband frequencies: modulator
tuning (T2, T3)

3. Sideband energy distribution: modulator volume (V2,
V3)

4. Sideband energy temporal evolution: modulator at-
tack (A2, A3), decay (D2, D3), sustain (S2, S3), release
(R2, R3).

With these groupings in mind, analysing the pattern of
correlations seen for each factor becomes a simpler task.
Increasing “sharpness” (F1) appears, for example, to be as-
sociated with (1) faster amplitude envelopes (↓A1, ↓R1), (2)
wider spacing between sidebands (↑T2, ↑T3), (3) more en-
ergy distributed to sidebands (↑V2, ↑V3), and (4) a shorter
sideband energy envelope (↓A2, ↓A3). Conversely, increas-
ing “mass” (F2) suggests parameter changes that cause (1)
slower amplitude envelopes with more sustain (↑D1, ↑S1,
↑R1), (2) narrower spacing between sidebands (↓T2, ↓T3)
(3) no change to sideband energy distribution, and (4) slower
sideband energy envelopes with more sustain (↑A2, ↑D2,
↑R2, ↑A3, ↑D3, ↑S3).

Through this lens, the semantic factor/synthesis parame-
ter relationships are somewhat intuitive. Percussiveness (F4)
is mostly associated, for example, with shorter envelopes
and more energy in sidebands, which is consistent with pre-
vious definitions of “percussive” semantic dimensions [28].
However, many of the semantic factor/synthesis parameter
correlations are statistically significant but exhibit only a
small correlation, which is congruent with the high variance
also seen in parameter changes per prompt. This suggests
that, as with the prompt-parameter relationships, the distri-
bution of semantic factor/synthesis parameter relationships
is highly varied and exhibits nuances likely resulting from
the specifics of FM synthesis discussed in the following
section.

4.3 Influence of task constraints and pitch
register

More generally, the hands-on synthesis component of the
present experiment may have resulted in heightened sen-
sitivity to certain timbral cues, such as those captured by
factors 3–5. These, although commonly shared across many
types of sounds, may be more difficult to perceptually dis-
entangle in complex natural versus simple synthetic sounds
(see, for example, [56]). As such, the latter may have in-
vited for subtler semantic associations. Reusing previously
created sounds as reference stimuli for each trial may also
have contributed to the prominence of timbral subtleties
in the factor space. Given the greater diversity of stimuli
included in the analysis, it is reasonable to assume that a
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wider diversity of sonic characteristics were represented.
However, as each stimulus pair was rated only once, it is not
possible to quantify inter-rater agreement on the presence
or distribution of these characteristics. It would therefore be
beneficial, in future work, to collect semantic ratings from
multiple participants on a shared set of stimuli similar to
those used in this study.

Another methodological choice that might have driven
the finer-grained factor solution is the use of pairwise com-
parative ratings, which are generally considered not to limit
the dimensionality that can be recovered [56]. As partici-
pants rated semantic scales based on the dissimilarity be-
tween a reference sound and the one they created, one stim-
ulus pair at a time, differentiating timbral subtleties which
may be obscured in an absolute rating paradigm might have
been enabled (although see [57]). Further work collecting
absolute semantic ratings on the same stimuli would be
necessary to confirm this.

The comparative nature of the semantic ratings might
also explain the lack of any significant relationship between
stimulus F0 and the five semantic factors in the present data.
At first this finding would appear at odds with previous
reports both when F0/pitch is examined directly [42, 43]
and when considered as an additional variable [27]. In the
LTM space, for instance, F0 was found strongly correlated
with the mass dimension, with lower pitched sounds rated
as thicker and more dense (c.f. [58]). It is possible that the
use of comparative versus absolute rating scales effectively
controlled for any F0 effects. Another plausible explanation
is that the specific characteristics of FM synthesis may have
perceptually obscured the true F0 of some sounds. That
is, the introduction of sidebands both above and below the
oscillating frequency of the carrier operator might have
falsely implied a lower or higher pitch [59].

The architecture of the FM synthesiser used by partic-
ipants may have limited the power of the linear models
presented in Section 3.3 to accurately predict the influence
of semantic prompts on parameter changes. In particular,
the symmetry of the modulation routing means that swap-
ping the parameter values of operators 2 and 3 would result
in an identical sound being produced. This is reflected in
the similarity of the linear effects (Fig. 5) between the pa-
rameters of both modulators, and may have weakened the
statistical relationships between modulator parameters and
semantic descriptors. There also exist degenerate regions in
the synthesis parameter space, such as when the amplitude
of a modulating operator is zero. In these cases, none of the
parameters of the modulator in question contribute to the
resulting audio signal, whilst still influencing the statistical
analysis. Future applications of this paradigm, therefore,
would benefit from either an asymmetric synthesis architec-
ture or an analysis that accounts for parameter redundancies
and degeneracies. Further experimentation with a linear
synthesis method, such as additive synthesis, would also
help understand to what extent our results derive from the
nonlinearity and complexity of FM synthesis.

Further, a given semantic prompt may not map uniquely
to a single point in the synthesiser’s parameter space as
per the instructed task. This is due to both the previously

discussed symmetry of the synthesiser and to the fact that
the synthesiser’s parameters may not map directly onto the
semantic dimensions under test. For example, it is plausible
that the neighbourhood surrounding a “bright” sound in the
parameter space also consists largely of “bright” sounds.
It is also conceivable that there may exist several disjoint
neighbourhoods in parameter space that satisfy a “bright”
timbre. As such, the collected data may represent an incom-
plete picture of a listener’s belief about the distributions
of semantic descriptors across the synthesiser’s parameter
space, as they provide only point estimates. Further research
aiming to map these distributions across the ranges of pa-
rameters would therefore be valuable.

4.4 Influence of word affect on timbre-semantic
associations

In the prompted synthesis study of Wallmark et al. [41],
affective connotations of the adjective prompts (based on
validated affect norms [60]) were found to exert an influence
over the acoustic properties of the created sound. Words
with positive or negative valence were observed to result in
higher scores on an acoustic component associated with
spectral centroid and noisiness. Words with neutral va-
lence, conversely, were associated with lower scores on
this component. We observed largely similar trends for
the FM sounds created in response to the three prompts
used in the present study, which respectively have posi-
tive valence (bright), neutral valence (thick), and negative
valence (rough) [60]. Specifically, the patterns of linear ef-
fects in Fig. 5 indicate that the largest effects for brighter,
less bright, and less rough were on the tuning and volume
controls of the two modulators, albeit with some inconsis-
tency between pitch registers; thicker and less thick showed
overall weaker linear effects for the same controls. These
controls were strongly associated with both spectral cen-
troid (PC1) and noisiness (PC3; Table 3 and Fig. 6). While
a systematic examination of the acoustical impact of word
affect remains beyond the scope of this paper, the present
data provide additional preliminary evidence of affective
mediation in timbre semantics.

4.5 Towards perceptually-informed sound design
and synthesis

As observed in the present study, and in previous work
[8], the controls of existing synthesisers generally do not
provide a clear mapping onto timbral concepts. Broadly
speaking, they instead map onto specifics of the underlying
synthesis method requiring musicians and sound designers
to acquire some level of signal processing knowledge in or-
der to make principled decisions. Even with this knowledge,
achieving conceptually simple alterations often requires
manipulation of multiple parameters, often in a counter intu-
itive manner governed by their subtle interdependence. This
issue is further compounded by the growing complexity of
commercial hardware and software synthesisers.

Wessel [9] first suggested the use of a timbre dissimilar-
ity space, constructed using multidimensional scaling, as
a control space for a synthesiser. The proposed approach
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used an additive synthesis engine whose envelope param-
eters were mapped linearly to the dimensions of the tim-
bre space. Such a simple mapping was likely facilitated
by the linearity of additive synthesis, where the signal is
constructed as a time-varying weighted sum of a set of ba-
sis functions. FM synthesis, conversely, constructs a signal
from synthesis parameters nonlinearly, and many controls
are thus arguably “perceptually nonlinear”. For example,
monotonically increasing a modulator’s frequency param-
eter over time would result in a signal which oscillates
between harmonic structure and total inharmonicity. Thus,
simple timbre space mappings to FM parameters can be
more challenging to derive [61, 62]. Further, mapping syn-
thesis parameters to a semantic timbre space introduces yet
another layer of complexity as, whilst timbre-semantic di-
mensions are assumed to relate to an underlying perceptual
representation, the nature of this relationship is not clear for
all dimensions [19, 63].

As research in neural audio synthesis [64] extends the ca-
pabilities of synthesisers beyond the limitations of familiar
techniques, a further set of challenges related to synthesis
control warrants consideration. It is now already feasible to
create convincing digital recreations of the sounds of physi-
cal musical instruments without the need for sample play-
back or physical modelling [65], transfer the timbre of one
instrument to another [66], perform perceptually smooth
“morphs” between timbres [10], and more. Recent work
[67] has enabled many of these techniques to be achieved
comfortably in real time on consumer CPUs, allowing the
capabilities of neural audio synthesis to be integrated into
tools for musicians and sound designers. Yet affording use-
ful timbral control over these tools remains an unsolved
problem. Their range of potential outputs is huge, yet their
internal representations of timbral characteristics are typi-
cally learnt directly from training data and are frequently
uninterpretable by humans.

Yet without a complete understanding of how synthetic
sounds are perceived, which characteristics are most per-
ceptually salient, how this perception maps onto compre-
hensible descriptions, and how these descriptions guide
the sounds design process, such work is unlikely to pro-
duce controls of practical utility to those hoping to exploit
the vast sonic potential of these new synthesisers in their
creative work. Previous work has focused on addressing
this problem in the context of audio engineering and music
production by studying the relationships between semantic
descriptors of timbre and the application of audio effects
including equalisation, compression, reverb [35], distortion
[36], and bit-depth reduction [68]. Progress on this problem
for audio synthesis will require interdisciplinary collabo-
ration across the fields of psychoacoustics, deep learning,
and human-computer interaction. To this end, we accom-
pany this work with a fully annotated dataset3 of sounds
produced in our study, with complete semantic ratings and
factor loadings. We intend this as a first step towards sharing
insights across these fields in a manner that will facilitate
progress on this problem.

5 CONCLUSIONS

In this study we investigated the semantic associations
of disembodied electronic timbres – specifically, those pro-
duced by a three operator FM synthesiser. We applied a
novel experimental paradigm in which participants directly
synthesised sounds in response to semantic prompts linked
to the dimensions of the luminance-texture-mass model of
timbre semantics. An exploratory factor analysis of compar-
ative semantic ratings collected between pairs of synthesised
sounds recovered a five factor semantic space. To identify
the acoustic underpinnings of the resulting factors, we per-
formed a correlation analysis with the principal components
of a comprehensive set of acoustic features. We also fit lin-
ear regression models to examine the effects of semantic
prompts on the use of synthesiser controls.

Semantic factors corresponding to luminance, texture,
and mass (LTM) were present in our model, but luminance
and texture were combined. We found acoustic correlates
of luminance and texture similar to those observed in previ-
ous work [27], but no acoustic correlates could be directly
identified for mass. Three additional factors were observed
with no obvious parallel in the LTM model. These showed
strong loadings for clear/clean, percussive/plucky, and raw,
respectively. No influence of fundamental frequency on
the ratings of semantic descriptors was observed, likely be-
cause of their comparative nature. All three comparative
LTM prompts exerted significant influence on the manip-
ulation of synthesiser controls. The prompts brighter, less
bright, and less rough in particular were very significantly
associated with changes to parameters directly controlling
the FM modulation index. Future work aiming to ascertain
the nature of our model’s three novel dimensions would be
valuable. The application of classical timbre dissimilarity
and semantics paradigms to sounds generated in our study
would also facilitate interpretation of these results in the
broader context of timbre research.
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A.1 Top 50 Timbre Descriptions
The 50 most frequently used timbral adjectives collected

from a popular modular synthesis forum according to the
procedure described in section 2.2.

Description Bigram Occ. Corpus Occ.

1 great 12637 128040
2 good 6158 142535
3 nice 3584 92787
4 different 3271 80763
5 awesome 1896 32652
6 cool 1734 54245
7 amazing 1571 20479
8 interesting 1415 40124
9 fantastic 1286 9598
10 synth 1222 60582
11 percussive 1217 3482
12 pretty 1093 75287
13 similar 1089 29786
14 new 887 88297
15 unique 848 8253
16 beautiful 692 9237
17 digital 678 30144
18 clean 670 12526
19 complex 573 15652
20 incredible 555 4106
21 modular 552 118712
22 fm 540 27389
23 wonderful 536 6525
24 overall 516 5425
25 right 491 77903
26 bad 487 23048
27 weird 446 12432
28 excellent 446 11666
29 drum 437 41217
30 organic 419 2383
31 sweet 409 8992
32 crazy 408 11627
33 raw 385 3557
34 external 372 22864
35 natural 364 2684
36 fine 362 32489
37 basic 352 19560
38 classic 345 8470
39 original 330 23436
40 electronic 323 9695
41 much 322 120812
42 many 315 56465
43 huge 307 11131
44 rich 302 3003
45 big 300 34466
46 metallic 297 1268
47 musical 296 9838
48 specific 293 12207
49 decent 288 9692
50 certain 279 11501

A.2 Descriptor Pruning Criteria
1.Remove words referring to affect (e.g., good)
2.Remove words referring to specific synthesisers or hard-

ware (e.g., moogy)
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3.Keep only one element of any group of words sharing
a stem, favouring the word with the highest corpus fre-
quency (e.g., wooden and woody).

4.Remove words more commonly used to describe pitch
than timbre (e.g., high)

5.Remove words describing loudness (e.g., loud)
6.Remove words describing duration (e.g., short or long)
7.Keep only one element of any group of obvious synonyms

(e.g., brilliant and bright)

A.3 Explanation of Comparative Factor Model
Let X be the full matrix of unobserved absolute semantic

ratings. Let Xc and Xr be matrices such that the the sets
of rows of Xc and Xr are overlapping subsets of the set of
rows of X , with Xc containing ratings of sounds created
by participants and Xr containing ratings of the reference
sounds.

The theoretical factor model X = LF + M + ε , where F
is the matrix of factor scores for each observation and each
column of matrix M contains the mean of the corresponding

column of X , then gives us the overall loading matrix L with
which we can specify models for Xc and Xr: Xc = LFc +
Mc + εc and Xr = LFr + Mr + εr. This loading matrix thus
applies also to our model of observed comparative ratings:

Xdiff = Xc − Xr + εdiff

= L(Fc − Fr) + Mc −Mr + εc − εr + εdiff

= LFdiff + Mdiff + ε.

Again, by linearity, the difference in the column means
(Mc and Mr) of Xc and Xr is equal to the column mean
of the element-wise differences between Xc and Xr, giving
Mdiff. The respective error terms (εc and εr) of these implicit
absolute models are, on account of their normality, simply
subsumed into the error term of the observed comparative
model as a sum of normally distributed random variables.

A.4 Extracted Acoustic Features
Table 5 summarizes and briefly explains the extracted

acoustic features.

THE AUTHORS

Ben Hayes Charalampos Saitis György Fazekas

Ben Hayes is a Ph.D. student at the Centre for Digital
Music (C4DM) in the School of Electronic Engineering
and Computer Science at Queen Mary University of Lon-
don (QMUL), UK, where he works under the supervision
of Charalampos Saitis and György Fazekas as part of the
UKRI Centre for Doctoral Training in Artificial Intelligence
and Music. His research centres around novel applications
of deep learning for modelling the synthesis and perception
of musical timbre, with a particular focus on meta-learning
techniques. He also holds an MSc degree in Sound and
Music Computing from QMUL and a BMus(Hons) in Elec-
tronic Music from the Guildhall School of Music and Drama.
He is an organising member of the Special Interest Group
on Neural Audio Synthesis (SIGNAS) at C4DM, and in
December 2021 he organised the first international Neural
Audio Synthesis Hackathon (NASH). Previously, he worked
as music lead at generative music startup Jukedeck, where
he contributed to their successful acquisition by ByteDance.

He has also toured internationally as a musician and is cur-
rently signed to R&S Records.r

Charalampos Saitis studied Mathematics and Musical
Acoustics in Athens and Belfast, and obtained a PhD in
Music Technology from McGill University. He is currently
Lecturer at the Centre for Digital Music of Queen Mary
University of London and Turing Fellow at the Alan Turing
Institute. His research concerns communication acoustics
with a focus on timbre perception, sensory crossmodality,
and “metaphors we listen with”. He acted as co-editor of the
Springer Series on Touch and Haptic Systems volume on
Musical Haptics (2018) and the Springer Handbook of Au-
ditory Research volume on Timbre (2019), and has authored
several recent publications on timbre perception and seman-
tics. He was co-organiser of the Berlin Interdisciplinary
Workshop on Timbre (2017) and a founding member of the
International Conference on Timbre (2020).

18 J. Audio Eng. Sco., Vol. 1, No. 1, 2020 January



PAPERS Disembodied Timbres

Table 5. Extracted acoustic features

Signal Representation Feature Explanation

STFTmag Spectrum Centroid Centre of mass of spectral representation

STFTpow Spectrum Spread The statistical variance of the distribution of spectral energy

Bark Spectrum Skewness The asymmetry of the distribution of spectral energy

Harmonic Spectrum Kurtosis Proportional to the amount of energy in the tails of the spectral distribution

Decrease A linear regression coefficient representing the decreasing slope of the spectrum

Rolloff The frequency bin below which 85% of spectral energy is contained

Frame Energy The total energy contained in the spectrum

Flatness The ratio between the geometric and arithmetic means of the spectrum

Crest The ratio between the maximum value and arithmetic mean of the spectrum

Harmonic Peaks Inharmonicity The energy-weighted divergence of harmonic peak frequencies from integer multiples
of the fundamental

Tristimulus #1 Relative weight of first harmonic

Tristimulus #2 Relative weight of second, third, and fourth harmonics

Tristimulus #3 Relative weight of fifth harmonic and higher

Odd-to-Even Ratio Ratio of energy contained in harmonic peaks with odd index to energy in those with
even index

Noisiness The difference between the total energy in the signal and the energy contained in
harmonic peaks

Amplitude Envelope Log Attack Time The log (base 10) of the time taken for the signal to move from 20% to 90% of its
maximum amplitude

Effective Duration The duration for which the signal is above 40% of its maximum amplitude

Temporal Centroid The centre of mass of the amplitude envelope

Raw Waveform Strong Decay A nonlinear function of temporal centroid and signal energy

Zero Crossing Rate The proportion of signal values that represent sign changesr
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